當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.brent方法代碼示例

本文整理匯總了Python中scipy.optimize.brent方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.brent方法的具體用法?Python optimize.brent怎麽用?Python optimize.brent使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.brent方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _yj_normmax

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def _yj_normmax(x, brack=(-2, 2)):
    """Compute optimal YJ transform parameter for input data.

    Parameters
    ----------

    x : array_like
       Input array.
    brack : 2-tuple
       The starting interval for a downhill bracket search
    """

    # Use MLE to compute the optimal YJ parameter
    def _mle_opt(i, brck):
        def _eval_mle(lmb, data):
            # Function to minimize
            return -_yj_llf(data, lmb)

        return optimize.brent(_eval_mle, brack=brck, args=(i,))

    return _mle_opt(x, brack)  # _mle(x, brack) 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:23,代碼來源:transform.py

示例2: boxcox_normmax

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def boxcox_normmax(x,brack=(-1.0,1.0)):
    N = len(x)
    # compute uniform median statistics
    Ui = zeros(N)*1.0
    Ui[-1] = 0.5**(1.0/N)
    Ui[0] = 1-Ui[-1]
    i = arange(2,N)
    Ui[1:-1] = (i-0.3175)/(N+0.365)
    # this function computes the x-axis values of the probability plot
    #  and computes a linear regression (including the correlation)
    #  and returns 1-r so that a minimization function maximizes the
    #  correlation
    xvals = distributions.norm.ppf(Ui)

    def tempfunc(lmbda, xvals, samps):
        y = boxcox(samps,lmbda)
        yvals = sort(y)
        r, prob = stats.pearsonr(xvals, yvals)
        return 1-r
    return optimize.brent(tempfunc, brack=brack, args=(xvals, x)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:22,代碼來源:morestats.py

示例3: _yeo_johnson_optimize

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def _yeo_johnson_optimize(self, x):
        """Find and return optimal lambda parameter of the Yeo-Johnson
        transform by MLE, for observed data x.

        Like for Box-Cox, MLE is done via the brent optimizer.
        """

        def _neg_log_likelihood(lmbda):
            """Return the negative log likelihood of the observed data x as a
            function of lambda."""
            x_trans = self._yeo_johnson_transform(x, lmbda)
            n_samples = x.shape[0]

            loglike = -n_samples / 2 * np.log(x_trans.var())
            loglike += (lmbda - 1) * (np.sign(x) * np.log1p(np.abs(x))).sum()

            return -loglike

        # the computation of lambda is influenced by NaNs so we need to
        # get rid of them
        x = x[~np.isnan(x)]
        # choosing bracket -2, 2 like for boxcox
        return optimize.brent(_neg_log_likelihood, brack=(-2, 2)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:data.py

示例4: _yj_est_lam

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def _yj_est_lam(y, brack, dtype=np.float32):
    y = np.asarray(y).astype(dtype)

    # Use MLE to compute the optimal YJ parameter
    def _mle_opt(i, brck):
        def _eval_mle(lmb, data):
            # Function to minimize
            return -_yj_llf(data, lmb)

        # Suppress the invalid scalar warnings we might get in the
        # optimization routine.
        @suppress
        def brent_optimize():
            return optimize.brent(_eval_mle, brack=brck, args=(i,))

        # suppressed version:
        return brent_optimize()

    return _mle_opt(y, brack)  # _mle(x, brack) 
開發者ID:tgsmith61591,項目名稱:skoot,代碼行數:21,代碼來源:skewness.py

示例5: P_dew_at_T

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def P_dew_at_T(self, T, zs, Psats=None):
        Psats = self._Psats(Psats, T)
        Pmax = self.P_bubble_at_T(T, zs, Psats)
        diff = 1E-7
        # EOSs do not solve at very low pressure
        if self.use_phis:
            Pmin = max(Pmax*diff, 1)
        else:
            Pmin = Pmax*diff
        P_dew = brenth(self._T_VF_err, Pmin, Pmax, args=(T, zs, Psats, Pmax, 1))
        self.__TVF_solve_cache = None
        return P_dew
#        try:
#            return brent(self._dew_P_UNIFAC_err, args=(T, zs, Psats, Pmax), brack=(Pmax*diff, Pmax*(1-diff), Pmax))
#        except:
#        return golden(self._dew_P_UNIFAC_err, args=(T, zs, Psats, Pmax), brack=(Pmax, Pmax*(1-diff)))
# 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:19,代碼來源:property_package.py

示例6: test_brent

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def test_brent(self):
        """ brent algorithm """
        x = optimize.brent(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:test_optimize.py

示例7: ppcc_max

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def ppcc_max(x, brack=(0.0,1.0), dist='tukeylambda'):
    """Returns the shape parameter that maximizes the probability plot
    correlation coefficient for the given data to a one-parameter
    family of distributions.

    See also ppcc_plot
    """
    try:
        ppf_func = eval('distributions.%s.ppf' % dist)
    except AttributeError:
        raise ValueError("%s is not a valid distribution with a ppf." % dist)
    """
    res = inspect.getargspec(ppf_func)
    if not ('loc' == res[0][-2] and 'scale' == res[0][-1] and \
            0.0==res[-1][-2] and 1.0==res[-1][-1]):
        raise ValueError("Function has does not have default location "
              "and scale parameters\n  that are 0.0 and 1.0 respectively.")
    if (1 < len(res[0])-len(res[-1])-1) or \
       (1 > len(res[0])-3):
        raise ValueError("Must be a one-parameter family.")
    """
    N = len(x)
    # compute uniform median statistics
    Ui = zeros(N)*1.0
    Ui[-1] = 0.5**(1.0/N)
    Ui[0] = 1-Ui[-1]
    i = arange(2,N)
    Ui[1:-1] = (i-0.3175)/(N+0.365)
    osr = sort(x)
    # this function computes the x-axis values of the probability plot
    #  and computes a linear regression (including the correlation)
    #  and returns 1-r so that a minimization function maximizes the
    #  correlation

    def tempfunc(shape, mi, yvals, func):
        xvals = func(mi, shape)
        r, prob = stats.pearsonr(xvals, yvals)
        return 1-r
    return optimize.brent(tempfunc, brack=brack, args=(Ui, osr, ppf_func)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:41,代碼來源:morestats.py

示例8: _box_cox_optimize

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def _box_cox_optimize(self, x):
        """Find and return optimal lambda parameter of the Box-Cox transform by
        MLE, for observed data x.

        We here use scipy builtins which uses the brent optimizer.
        """
        # the computation of lambda is influenced by NaNs so we need to
        # get rid of them
        _, lmbda = stats.boxcox(x[~np.isnan(x)], lmbda=None)

        return lmbda 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:13,代碼來源:data.py

示例9: test_brent

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def test_brent(self):
        x = optimize.brent(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:test_optimize.py

示例10: test_brent_negative_tolerance

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def test_brent_negative_tolerance():
    assert_raises(ValueError, optimize.brent, np.cos, tol=-.01) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:test_optimize.py

示例11: main

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def main():
    res = optimize.brent(propagation_function,
                         brack=(0, 1e-5, 5e-5),
                         tol=1e-3,
                         full_output=True)
    print("Output:", res)
    plt.figure('dE vs dTheta')
    plt.plot(np.array(minimizationArray)[:, 0]*1e6,
             np.array(minimizationArray)[:, 1],
             'ro', ls='')
    plt.grid()
    axes = plt.gca()
    axes.set_xlabel("$d\Theta$, $\mu$rad"); axes.set_ylabel("$\Delta$E, eV")
    plt.savefig("dE_vs_dTheta.png")

    plt.figure('Flux vs dTheta')
    plt.plot(np.array(minimizationArray)[:, 0]*1e6,
             np.array(minimizationArray)[:, 2],
             'go', ls='')
    plt.grid()
    axes = plt.gca()
    axes.set_xlabel("$d\Theta$, $\mu$rad"); axes.set_ylabel("Flux, photons/s")
    plt.savefig("Flux_vs_dTheta.png")

    plt.figure('Convergence')
    plt.plot(np.arange(len(minimizationArray)),
             np.array(minimizationArray)[:, 1],
             '-bo')
    axes = plt.gca()
    axes.set_xlabel("Iteration Nr."); axes.set_ylabel("$\Delta$E, eV")
    plt.savefig("Convergence.png")
    plt.show() 
開發者ID:kklmn,項目名稱:xrt,代碼行數:34,代碼來源:16.1_autoOptimization_detuning.py

示例12: boxcox

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def boxcox(x,lmbda=None,alpha=None):
    """
    Return a positive dataset transformed by a Box-Cox power transformation.

    Parameters
    ----------
    x : ndarray
        Input array.
    lmbda : {None, scalar}, optional
        If `lmbda` is not None, do the transformation for that value.

        If `lmbda` is None, find the lambda that maximizes the log-likelihood
        function and return it as the second output argument.
    alpha : {None, float}, optional
        If `alpha` is not None, return the ``100 * (1-alpha)%`` confidence
        interval for `lmbda` as the third output argument.

        If `alpha` is not None it must be between 0.0 and 1.0.

    Returns
    -------
    boxcox : ndarray
        Box-Cox power transformed array.
    maxlog : float, optional
        If the `lmbda` parameter is None, the second returned argument is
        the lambda that maximizes the log-likelihood function.
    (min_ci, max_ci) : tuple of float, optional
        If `lmbda` parameter is None and `alpha` is not None, this returned
        tuple of floats represents the minimum and maximum confidence limits
        given `alpha`.

    """
    if any(x < 0):
        raise ValueError("Data must be positive.")
    if lmbda is not None:  # single transformation
        lmbda = lmbda*(x == x)
        y = where(lmbda == 0, log(x), (x**lmbda - 1)/lmbda)
        return y

    # Otherwise find the lmbda that maximizes the log-likelihood function.
    def tempfunc(lmb, data):  # function to minimize
        return -boxcox_llf(lmb,data)
    lmax = optimize.brent(tempfunc, brack=(-2.0,2.0),args=(x,))
    y = boxcox(x, lmax)
    if alpha is None:
        return y, lmax
    # Otherwise find confidence interval
    interval = _boxcox_conf_interval(x, lmax, alpha)
    return y, lmax, interval 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:51,代碼來源:morestats.py

示例13: boxcox_normmax

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brent [as 別名]
def boxcox_normmax(x, bounds=None, brack=(-2.0, 2.0), method='pearsonr'):
    # bounds is None, use simple Brent optimisation
    if bounds is None:
        def optimizer(func, args):
            return optimize.brent(func, brack=brack, args=args)

    # otherwise use bounded Brent optimisation
    else:
        # input checks on bounds
        if not isinstance(bounds, tuple) or len(bounds) != 2:
            raise ValueError(
                f"`bounds` must be a tuple of length 2, but found: {bounds}")

        def optimizer(func, args):
            return optimize.fminbound(func, bounds[0], bounds[1], args=args)

    def _pearsonr(x):
        osm_uniform = _calc_uniform_order_statistic_medians(len(x))
        xvals = distributions.norm.ppf(osm_uniform)

        def _eval_pearsonr(lmbda, xvals, samps):
            # This function computes the x-axis values of the probability plot
            # and computes a linear regression (including the correlation) and
            # returns ``1 - r`` so that a minimization function maximizes the
            # correlation.
            y = boxcox(samps, lmbda)
            yvals = np.sort(y)
            r, prob = stats.pearsonr(xvals, yvals)
            return 1 - r

        return optimizer(_eval_pearsonr, args=(xvals, x))

    def _mle(x):
        def _eval_mle(lmb, data):
            # function to minimize
            return -boxcox_llf(lmb, data)

        return optimizer(_eval_mle, args=(x,))

    def _all(x):
        maxlog = np.zeros(2, dtype=float)
        maxlog[0] = _pearsonr(x)
        maxlog[1] = _mle(x)
        return maxlog

    methods = {'pearsonr': _pearsonr,
               'mle': _mle,
               'all': _all}
    if method not in methods.keys():
        raise ValueError("Method %s not recognized." % method)

    optimfunc = methods[method]
    return optimfunc(x) 
開發者ID:alan-turing-institute,項目名稱:sktime,代碼行數:55,代碼來源:boxcox.py


注:本文中的scipy.optimize.brent方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。