本文整理匯總了Python中scipy.optimize.basinhopping方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.basinhopping方法的具體用法?Python optimize.basinhopping怎麽用?Python optimize.basinhopping使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.basinhopping方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_TypeError
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_TypeError(self):
# test the TypeErrors are raised on bad input
i = 1
# if take_step is passed, it must be callable
self.assertRaises(TypeError, basinhopping, func2d, self.x0[i],
take_step=1)
# if accept_test is passed, it must be callable
self.assertRaises(TypeError, basinhopping, func2d, self.x0[i],
accept_test=1)
# accept_test must return bool or string "force_accept"
def bad_accept_test1(*args, **kwargs):
return 1
def bad_accept_test2(*args, **kwargs):
return "not force_accept"
self.assertRaises(ValueError, basinhopping, func2d, self.x0[i],
minimizer_kwargs=self.kwargs,
accept_test=bad_accept_test1)
self.assertRaises(ValueError, basinhopping, func2d, self.x0[i],
minimizer_kwargs=self.kwargs,
accept_test=bad_accept_test2)
示例2: test_jac
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_jac(self):
# test jacobian returned
minimizer_kwargs = self.kwargs.copy()
# BFGS returns a Jacobian
minimizer_kwargs["method"] = "BFGS"
res = basinhopping(func2d_easyderiv, [0.0, 0.0],
minimizer_kwargs=minimizer_kwargs, niter=self.niter,
disp=self.disp)
assert_(hasattr(res.lowest_optimization_result, "jac"))
# in this case, the jacobian is just [df/dx, df/dy]
_, jacobian = func2d_easyderiv(res.x)
assert_almost_equal(res.lowest_optimization_result.jac, jacobian,
self.tol)
示例3: test_all_nograd_minimizers
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_all_nograd_minimizers(self):
# test 2d minimizations without gradient. Newton-CG requires jac=True,
# so not included here.
i = 1
methods = ['CG', 'BFGS', 'L-BFGS-B', 'TNC', 'SLSQP',
'Nelder-Mead', 'Powell', 'COBYLA']
minimizer_kwargs = copy.copy(self.kwargs_nograd)
for method in methods:
minimizer_kwargs["method"] = method
res = basinhopping(func2d_nograd, self.x0[i],
minimizer_kwargs=minimizer_kwargs,
niter=self.niter, disp=self.disp)
tol = self.tol
if method == 'COBYLA':
tol = 2
assert_almost_equal(res.x, self.sol[i], decimal=tol)
示例4: test_seed_reproducibility
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_seed_reproducibility(self):
# seed should ensure reproducibility between runs
minimizer_kwargs = {"method": "L-BFGS-B", "jac": True}
f_1 = []
def callback(x, f, accepted):
f_1.append(f)
basinhopping(func2d, [1.0, 1.0], minimizer_kwargs=minimizer_kwargs,
niter=10, callback=callback, seed=10)
f_2 = []
def callback2(x, f, accepted):
f_2.append(f)
basinhopping(func2d, [1.0, 1.0], minimizer_kwargs=minimizer_kwargs,
niter=10, callback=callback2, seed=10)
assert_equal(np.array(f_1), np.array(f_2))
示例5: find_assignment
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def find_assignment(variable_handler, atoms, max_num_resets, tol, verbose=True):
init = variable_handler.dict_to_vector()
def func(vector):
return sum(evaluate(atom, variable_handler.vector_to_dict(vector)).norm for atom in atoms)
xs = []
fs = []
options = {'ftol': tol**2}
minimizer_kwargs = {"method": "SLSQP", "options": options}
for i in range(max_num_resets):
result = basinhopping(func, init, minimizer_kwargs=minimizer_kwargs)
if verbose:
print("iteration %d:" % (i+1))
print(result)
xs.append(result.x)
fs.append(result.fun)
if result.fun < tol:
break
init = np.random.rand(len(init))
min_idx = min(enumerate(fs), key=lambda pair: pair[1])[0]
assignment = variable_handler.vector_to_dict(xs[min_idx])
norm = fs[min_idx]
return assignment, norm
示例6: best_eer
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def best_eer(true_labels, predictions):
def f_neg(threshold):
## Scipy tries to minimize the function
return compute_eer(true_labels, predictions >= threshold)
# Initialization of best threshold search
thr_0 = [0.20] * 1 # binary class
constraints = [(0.,1.)] * 1 # binary class
def bounds(**kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= 1))
tmin = bool(np.all(x >= 0))
return tmax and tmin
# Search using L-BFGS-B, the epsilon step must be big otherwise there is no gradient
minimizer_kwargs = {"method": "L-BFGS-B",
"bounds":constraints,
"options":{
"eps": 0.05
}
}
# We combine L-BFGS-B with Basinhopping for stochastic search with random steps
logger.info("===> Searching optimal threshold for each label")
start_time = timer()
opt_output = basinhopping(f_neg, thr_0,
stepsize = 0.1,
minimizer_kwargs=minimizer_kwargs,
niter=10,
accept_test=bounds)
end_time = timer()
logger.info("===> Optimal threshold for each label:\n{}".format(opt_output.x))
logger.info("Threshold found in: %s seconds" % (end_time - start_time))
score = opt_output.fun
return score, opt_output.x
示例7: best_eer
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def best_eer(val_scores, utt2len, utt2label, key_list):
def f_neg(threshold):
## Scipy tries to minimize the function
return utt_eer(val_scores, utt2len, utt2label, key_list, threshold)
# Initialization of best threshold search
thr_0 = [0.20] * 1 # binary class
constraints = [(0.,1.)] * 1 # binary class
def bounds(**kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= 1))
tmin = bool(np.all(x >= 0))
return tmax and tmin
# Search using L-BFGS-B, the epsilon step must be big otherwise there is no gradient
minimizer_kwargs = {"method": "L-BFGS-B",
"bounds":constraints,
"options":{
"eps": 0.05
}
}
# We combine L-BFGS-B with Basinhopping for stochastic search with random steps
logger.info("===> Searching optimal threshold for each label")
start_time = timer()
opt_output = basinhopping(f_neg, thr_0,
stepsize = 0.1,
minimizer_kwargs=minimizer_kwargs,
niter=10,
accept_test=bounds)
end_time = timer()
logger.info("===> Optimal threshold for each label:\n{}".format(opt_output.x))
logger.info("Threshold found in: %s seconds" % (end_time - start_time))
score = opt_output.fun
return score, opt_output.x
示例8: _fit_basinhopping
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def _fit_basinhopping(f, score, start_params, fargs, kwargs, disp=True,
maxiter=100, callback=None, retall=False,
full_output=True, hess=None):
if not 'basinhopping' in vars(optimize):
msg = 'basinhopping solver is not available, use e.g. bfgs instead!'
raise ValueError(msg)
from copy import copy
kwargs = copy(kwargs)
niter = kwargs.setdefault('niter', 100)
niter_success = kwargs.setdefault('niter_success', None)
T = kwargs.setdefault('T', 1.0)
stepsize = kwargs.setdefault('stepsize', 0.5)
interval = kwargs.setdefault('interval', 50)
minimizer_kwargs = kwargs.get('minimizer', {})
minimizer_kwargs['args'] = fargs
minimizer_kwargs['jac'] = score
method = minimizer_kwargs.get('method', None)
if method and method != 'L-BFGS-B': # l_bfgs_b doesn't take a hessian
minimizer_kwargs['hess'] = hess
retvals = optimize.basinhopping(f, start_params,
minimizer_kwargs=minimizer_kwargs,
niter=niter, niter_success=niter_success,
T=T, stepsize=stepsize, disp=disp,
callback=callback, interval=interval)
if full_output:
xopt, fopt, niter, fcalls = map(lambda x : getattr(retvals, x),
['x', 'fun', 'nit', 'nfev'])
converged = 'completed successfully' in retvals.message[0]
retvals = {'fopt': fopt, 'iterations': niter,
'fcalls': fcalls, 'converged': converged}
else:
xopt = retvals.x
retvals = None
return xopt, retvals
示例9: setup_class
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def setup_class(cls):
if not has_basinhopping:
raise SkipTest("Skipped TestProbitBasinhopping since"
" basinhopping solver is not available")
data = sm.datasets.spector.load()
data.exog = sm.add_constant(data.exog, prepend=False)
res2 = Spector()
res2.probit()
cls.res2 = res2
fit = Probit(data.endog, data.exog).fit
cls.res1 = fit(method="basinhopping", disp=0, niter=5,
minimizer={'method' : 'L-BFGS-B', 'tol' : 1e-8})
示例10: max
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def max(self):
# use method L-BFGS-B because the problem is smooth and bounded
minimizer_kwargs = dict(method="L-BFGS-B", bounds=[(self.mus.min(), self.mus.max())])
f = lambda x: -self.predict(x)
res = basinhopping(f, self.mus.mean(), minimizer_kwargs=minimizer_kwargs)
return res.x
示例11: test_1d_grad
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_1d_grad(self):
# test 1d minimizations with gradient
i = 0
res = basinhopping(func1d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp)
assert_almost_equal(res.x, self.sol[i], self.tol)
示例12: test_2d
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_2d(self):
# test 2d minimizations with gradient
i = 1
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp)
assert_almost_equal(res.x, self.sol[i], self.tol)
self.assertTrue(res.nfev > 0)
示例13: test_njev
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_njev(self):
# test njev is returned correctly
i = 1
minimizer_kwargs = self.kwargs.copy()
# L-BFGS-B doesn't use njev, but BFGS does
minimizer_kwargs["method"] = "BFGS"
res = basinhopping(func2d, self.x0[i],
minimizer_kwargs=minimizer_kwargs, niter=self.niter,
disp=self.disp)
self.assertTrue(res.nfev > 0)
self.assertEqual(res.nfev, res.njev)
示例14: test_2d_nograd
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_2d_nograd(self):
# test 2d minimizations without gradient
i = 1
res = basinhopping(func2d_nograd, self.x0[i],
minimizer_kwargs=self.kwargs_nograd,
niter=self.niter, disp=self.disp)
assert_almost_equal(res.x, self.sol[i], self.tol)
示例15: test_pass_takestep
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import basinhopping [as 別名]
def test_pass_takestep(self):
# test that passing a custom takestep works
# also test that the stepsize is being adjusted
takestep = MyTakeStep1()
initial_step_size = takestep.stepsize
i = 1
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp,
take_step=takestep)
assert_almost_equal(res.x, self.sol[i], self.tol)
assert_(takestep.been_called)
# make sure that the built in adaptive step size has been used
assert_(initial_step_size != takestep.stepsize)