當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.approx_fprime方法代碼示例

本文整理匯總了Python中scipy.optimize.approx_fprime方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.approx_fprime方法的具體用法?Python optimize.approx_fprime怎麽用?Python optimize.approx_fprime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.approx_fprime方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: l_x

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def l_x(self, x, u, i, terminal=False):
        """Partial derivative of cost function with respect to x.

        Args:
            x: Current state [state_size].
            u: Current control [action_size]. None if terminal.
            i: Current time step.
            terminal: Compute terminal cost. Default: False.

        Returns:
            dl/dx [state_size].
        """
        if terminal:
            return approx_fprime(x, lambda x: self._l_terminal(x, i),
                                 self._x_eps)

        return approx_fprime(x, lambda x: self._l(x, u, i), self._x_eps) 
開發者ID:anassinator,項目名稱:ilqr,代碼行數:19,代碼來源:cost.py

示例2: l_u

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def l_u(self, x, u, i, terminal=False):
        """Partial derivative of cost function with respect to u.

        Args:
            x: Current state [state_size].
            u: Current control [action_size]. None if terminal.
            i: Current time step.
            terminal: Compute terminal cost. Default: False.

        Returns:
            dl/du [action_size].
        """
        if terminal:
            # Not a function of u, so the derivative is zero.
            return np.zeros(self._action_size)

        return approx_fprime(u, lambda u: self._l(x, u, i), self._u_eps) 
開發者ID:anassinator,項目名稱:ilqr,代碼行數:19,代碼來源:cost.py

示例3: l_xx

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def l_xx(self, x, u, i, terminal=False):
        """Second partial derivative of cost function with respect to x.

        Args:
            x: Current state [state_size].
            u: Current control [action_size]. None if terminal.
            i: Current time step.
            terminal: Compute terminal cost. Default: False.

        Returns:
            d^2l/dx^2 [state_size, state_size].
        """
        eps = self._x_eps_hess
        Q = np.vstack([
            approx_fprime(x, lambda x: self.l_x(x, u, i, terminal)[m], eps)
            for m in range(self._state_size)
        ])
        return Q 
開發者ID:anassinator,項目名稱:ilqr,代碼行數:20,代碼來源:cost.py

示例4: l_ux

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def l_ux(self, x, u, i, terminal=False):
        """Second partial derivative of cost function with respect to u and x.

        Args:
            x: Current state [state_size].
            u: Current control [action_size]. None if terminal.
            i: Current time step.
            terminal: Compute terminal cost. Default: False.

        Returns:
            d^2l/dudx [action_size, state_size].
        """
        if terminal:
            # Not a function of u, so the derivative is zero.
            return np.zeros((self._action_size, self._state_size))

        eps = self._x_eps_hess
        Q = np.vstack([
            approx_fprime(x, lambda x: self.l_u(x, u, i)[m], eps)
            for m in range(self._action_size)
        ])
        return Q 
開發者ID:anassinator,項目名稱:ilqr,代碼行數:24,代碼來源:cost.py

示例5: l_uu

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def l_uu(self, x, u, i, terminal=False):
        """Second partial derivative of cost function with respect to u.

        Args:
            x: Current state [state_size].
            u: Current control [action_size]. None if terminal.
            i: Current time step.
            terminal: Compute terminal cost. Default: False.

        Returns:
            d^2l/du^2 [action_size, action_size].
        """
        if terminal:
            # Not a function of u, so the derivative is zero.
            return np.zeros((self._action_size, self._action_size))

        eps = self._u_eps_hess
        Q = np.vstack([
            approx_fprime(u, lambda u: self.l_u(x, u, i)[m], eps)
            for m in range(self._action_size)
        ])
        return Q 
開發者ID:anassinator,項目名稱:ilqr,代碼行數:24,代碼來源:cost.py

示例6: test_std_gradient

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def test_std_gradient():
    length_scale = np.arange(1, 6)
    X = rng.randn(10, 5)
    y = rng.randn(10)
    X_new = rng.randn(5)

    rbf = RBF(length_scale=length_scale, length_scale_bounds="fixed")
    gpr = GaussianProcessRegressor(rbf, random_state=0).fit(X, y)

    _, _, _, std_grad = gpr.predict(
        np.expand_dims(X_new, axis=0),
        return_std=True, return_cov=False, return_mean_grad=True,
        return_std_grad=True)
    num_grad = optimize.approx_fprime(
        X_new, lambda x: predict_wrapper(x, gpr)[1], 1e-4)
    assert_array_almost_equal(std_grad, num_grad, decimal=3) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:18,代碼來源:test_gpr.py

示例7: test_soft_dtw_grad_X

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def test_soft_dtw_grad_X():
    def make_func(gamma):
        def func(x):
            X_ = x.reshape(*X.shape)
            D_ = SquaredEuclidean(X_, Y)
            return SoftDTW(D_, gamma).compute()
        return func

    for gamma in (0.001, 0.01, 0.1, 1, 10, 100, 1000):
        dist = SquaredEuclidean(X, Y)
        sdtw = SoftDTW(dist, gamma)
        sdtw.compute()
        E = sdtw.grad()
        G = dist.jacobian_product(E)

        func = make_func(gamma)
        G_num = approx_fprime(X.ravel(), func, 1e-6).reshape(*G.shape)
        assert_array_almost_equal(G, G_num, 5) 
開發者ID:mblondel,項目名稱:soft-dtw,代碼行數:20,代碼來源:test_soft_dtw.py

示例8: test_score

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def test_score():

    uniq, load, corr, par = _toy()
    fa = Factor(n_factor=2, corr=corr)

    def f(par):
        return fa.loglike(par)

    par2 = np.r_[0.1, 0.2, 0.3, 0.4, 0.3, 0.1, 0.2, -0.2, 0, 0.8, 0.5, 0]

    for pt in (par, par2):
        g1 = approx_fprime(pt, f, 1e-8)
        g2 = fa.score(pt)
        assert_allclose(g1, g2, atol=1e-3) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:16,代碼來源:test_ml_factor.py

示例9: _check_gradients

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def _check_gradients(layer_args, input_shape):
    rand = np.random.RandomState(0)
    net = cn.SoftmaxNet(layer_args=layer_args, input_shape=input_shape, rand_state=rand)
    x = rand.randn(*(10,)+net.input_shape)/100
    y = rand.randn(10) > 0
    by = net.binarize_labels(y)

    g1 = approx_fprime(net.get_params(), net.cost_for_params, 1e-5, x, by)
    g2 = net.param_grad(x, by)
    err = np.max(np.abs(g1-g2))/np.abs(g1).max()
    print err
    assert err < 1e-3, 'incorrect gradient!' 
開發者ID:bbabenko,項目名稱:simple_convnet,代碼行數:14,代碼來源:simple_convnet_tests.py

示例10: test_logistic_loss_and_grad

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def test_logistic_loss_and_grad():
    X_ref, y = make_classification(n_samples=20, random_state=0)
    n_features = X_ref.shape[1]

    X_sp = X_ref.copy()
    X_sp[X_sp < .1] = 0
    X_sp = sp.csr_matrix(X_sp)
    for X in (X_ref, X_sp):
        w = np.zeros(n_features)

        # First check that our derivation of the grad is correct
        loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.)
        approx_grad = optimize.approx_fprime(
            w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3
        )
        assert_array_almost_equal(grad, approx_grad, decimal=2)

        # Second check that our intercept implementation is good
        w = np.zeros(n_features + 1)
        loss_interp, grad_interp = _logistic_loss_and_grad(
            w, X, y, alpha=1.
        )
        assert_array_almost_equal(loss, loss_interp)

        approx_grad = optimize.approx_fprime(
            w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3
        )
        assert_array_almost_equal(grad_interp, approx_grad, decimal=2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:30,代碼來源:test_logistic.py

示例11: _test_gradient

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def _test_gradient(n_items, fcts):
    """Helper for testing the gradient of objective functions."""
    for sigma in np.linspace(1, 20, num=10):
        xs = sigma * RND.randn(n_items)
        val = approx_fprime(xs, fcts.objective, EPS)
        err = check_grad(fcts.objective, fcts.gradient, xs, epsilon=EPS)
        assert abs(err / np.linalg.norm(val)) < 1e-5 
開發者ID:lucasmaystre,項目名稱:choix,代碼行數:9,代碼來源:test_opt.py

示例12: _test_hessian

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def _test_hessian(n_items, fcts):
    """Helper for testing the hessian of objective functions."""
    for sigma in np.linspace(1, 20, num=10):
        xs = sigma * RND.randn(n_items)
        for i in range(n_items):
            obj = lambda xs: fcts.gradient(xs)[i]
            grad = lambda xs: fcts.hessian(xs)[i]
            val = approx_fprime(xs, obj, EPS)
            err = check_grad(obj, grad, xs, epsilon=EPS)
            assert abs(err / np.linalg.norm(val)) < 1e-5 
開發者ID:lucasmaystre,項目名稱:choix,代碼行數:12,代碼來源:test_opt.py

示例13: test_gradients

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def test_gradients(before_test_inv_pend):
    env = before_test_inv_pend
    n_s = env.n_s
    n_u = env.n_u

    for i in range(n_s):
        f = lambda z: env._dynamics(0, z[:env.n_s], z[env.n_s:])[i]
        f_grad = env._jac_dynamics()[i, :]
        grad_finite_diff = approx_fprime(np.zeros((n_s + n_u,)), f, 1e-8)

        # err = check_grad(f,f_grad,np.zeros((n_s+n_u,)))

        assert np.allclose(f_grad,
                           grad_finite_diff), 'Is the gradient of the {}-th dynamics dimension correct?'.format(
            i) 
開發者ID:befelix,項目名稱:safe-exploration,代碼行數:17,代碼來源:test_environments.py

示例14: test_gradients

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def test_gradients(distr):
    """Test gradient accuracy."""
    # data
    scaler = StandardScaler()
    n_samples, n_features = 1000, 100
    X = np.random.normal(0.0, 1.0, [n_samples, n_features])
    X = scaler.fit_transform(X)

    density = 0.1
    beta_ = np.zeros(n_features + 1)
    beta_[0] = np.random.rand()
    beta_[1:] = sps.rand(n_features, 1, density=density).toarray()[:, 0]

    reg_lambda = 0.1

    glm = GLM(distr=distr, reg_lambda=reg_lambda)
    y = simulate_glm(glm.distr, beta_[0], beta_[1:], X)

    func = partial(_L2loss, distr, glm.alpha,
                   glm.Tau, reg_lambda, X, y, glm.eta, glm.group)
    grad = partial(_grad_L2loss, distr, glm.alpha, glm.Tau,
                   reg_lambda, X, y,
                   glm.eta)
    approx_grad = approx_fprime(beta_, func, 1.5e-8)
    analytical_grad = grad(beta_)
    assert_allclose(approx_grad, analytical_grad, rtol=1e-5, atol=1e-3) 
開發者ID:glm-tools,項目名稱:pyglmnet,代碼行數:28,代碼來源:test_pyglmnet.py

示例15: objective_master_nlopt

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import approx_fprime [as 別名]
def objective_master_nlopt(x, grad):
    vars = get_groove_global_vars()
    numDOF = len(x)
    g = O.approx_fprime(x, vars.objective_function, numDOF * [0.001])
    if grad.size > 0:
        for i in xrange(numDOF):
            grad[i] = g[i]

    return vars.objective_function(x)


################################################################################################# 
開發者ID:uwgraphics,項目名稱:relaxed_ik,代碼行數:14,代碼來源:objective.py


注:本文中的scipy.optimize.approx_fprime方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。