本文整理匯總了Python中scipy.optimize.OptimizeWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.OptimizeWarning方法的具體用法?Python optimize.OptimizeWarning怎麽用?Python optimize.OptimizeWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.OptimizeWarning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_enzo_example_b
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_enzo_example_b(self):
# rescued from https://github.com/scipy/scipy/pull/218
c = [2.8, 6.3, 10.8, -2.8, -6.3, -10.8]
A_eq = [[-1, -1, -1, 0, 0, 0],
[0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1]]
b_eq = [-0.5, 0.4, 0.3, 0.3, 0.3]
if self.method == "simplex":
# Including the callback here ensures the solution can be
# calculated correctly.
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq,
method=self.method, options=self.options,
callback=lambda x, **kwargs: None)
else:
with suppress_warnings() as sup:
sup.filter(OptimizeWarning, "A_eq does not appear...")
res = linprog(c=c, A_eq=A_eq, b_eq=b_eq,
method=self.method, options=self.options)
_assert_success(res, desired_fun=-1.77,
desired_x=[0.3, 0.2, 0.0, 0.0, 0.1, 0.3])
示例2: test_linprog_optimizewarning
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_linprog_optimizewarning(self, dummy_linprog):
"""The linear program sometimes throws OptimizeWarning for matrices that
are not full row rank. In such a case, penaltymodel-lp should give up
and let a more sophisticated penaltymodel deal with the problem"""
# Note: I'm using mock because it's difficult to think of a small ising
# system that is not full row rank. (i.e. need to consider linear states,
# quadratic states, offset and gap coefficients when building
# the non-full-row-rank matrix).
dummy_linprog.return_value = OptimizeWarning
# Placeholder problem
nodes = ['r', 'a', 'n', 'd', 'o', 'm']
values = {(1, 1, 1, 1, 1, 1), (1, 1, 0, 0, 0, 0)}
with self.assertRaises(ValueError):
lp.generate_bqm(nx.complete_graph(nodes), values, nodes,
catch_warnings=False)
示例3: make_cut
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def make_cut(self, in_node, out_node, score, MSF=None):
"""
make a cut on the MSF inplace, provided the in_node, out_node, MSF, and score.
in_node: int, ID of the source node for the edge to be cut
out_node: int, ID of the destination node for the edge to be cut
score: float, the value of the score being cut. if the score is infinite, the cut is not made.
MSF: the spanning forest to use when making the cut. If not provided,
uses the defualt tree in self.minimum_spanning_forest_
"""
if MSF is None:
MSF = self.minimum_spanning_forest_
if np.isfinite(score):
MSF[in_node, out_node] = 0
MSF.eliminate_zeros()
return (MSF, *cg.connected_components(MSF, directed=False))
raise OptimizeWarning('Score of the ({},{}) cut is inf, the quorum is likely not met!')
示例4: test_network_flow_limited_capacity
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_network_flow_limited_capacity(self):
# A network flow problem with supply and demand at nodes
# and with costs and capacities along directed edges.
# http://blog.sommer-forst.de/2013/04/10/
cost = [2, 2, 1, 3, 1]
bounds = [
[0, 4],
[0, 2],
[0, 2],
[0, 3],
[0, 5]]
n, p = -1, 1
A_eq = [
[n, n, 0, 0, 0],
[p, 0, n, n, 0],
[0, p, p, 0, n],
[0, 0, 0, p, p]]
b_eq = [-4, 0, 0, 4]
if self.method == "simplex":
# Including the callback here ensures the solution can be
# calculated correctly, even when phase 1 terminated
# with some of the artificial variables as pivots
# (i.e. basis[:m] contains elements corresponding to
# the artificial variables)
res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
method=self.method, options=self.options,
callback=lambda x, **kwargs: None)
else:
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
sup.filter(OptimizeWarning, "A_eq does not appear...")
sup.filter(OptimizeWarning, "Solving system with option...")
res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
method=self.method, options=self.options)
_assert_success(res, desired_fun=14)
示例5: test_unknown_options_or_solver
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_unknown_options_or_solver(self):
c = np.array([-3, -2])
A_ub = [[2, 1], [1, 1], [1, 0]]
b_ub = [10, 8, 4]
def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,
options={}):
linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method,
options=options)
_assert_warns(OptimizeWarning, f,
c, A_ub=A_ub, b_ub=b_ub, options=dict(spam='42'))
assert_raises(ValueError, linprog,
c, A_ub=A_ub, b_ub=b_ub, method='ekki-ekki-ekki')
示例6: test_remove_redundancy_infeasibility
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_remove_redundancy_infeasibility(self):
m, n = 10, 10
c = np.random.rand(n)
A0 = np.random.rand(m, n)
b0 = np.random.rand(m)
A0[-1, :] = 2 * A0[-2, :]
b0[-1] *= -1
with suppress_warnings() as sup:
sup.filter(OptimizeWarning, "A_eq does not appear...")
res = linprog(c, A_eq=A0, b_eq=b0,
method=self.method, options=self.options)
_assert_infeasible(res)
示例7: test_magic_square_bug_7044
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_magic_square_bug_7044(self):
# test linprog with a problem with a rank-deficient A_eq matrix
A, b, c, N = magic_square(3)
with suppress_warnings() as sup:
sup.filter(OptimizeWarning, "A_eq does not appear...")
res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
method=self.method, options=self.options)
_assert_success(res, desired_fun=1.730550597)
示例8: test_bug_8664
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_bug_8664(self):
# Weak test. Ideally should _detect infeasibility_ for all options.
c = [4]
A_ub = [[2], [5]]
b_ub = [4, 4]
A_eq = [[0], [-8], [9]]
b_eq = [3, 2, 10]
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
sup.filter(OptimizeWarning, "Solving system with option...")
o = {key: self.options[key] for key in self.options}
o["presolve"] = False
res = linprog(c, A_ub, b_ub, A_eq, b_eq, options=o,
method=self.method)
assert_(not res.success, "incorrectly reported success")
示例9: test_alternate_initial_point
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_alternate_initial_point(self):
# Test with a rather large problem (400 variables,
# 40 constraints) generated by https://gist.github.com/denis-bz/8647461
# use "improved" initial point
A, b, c = lpgen_2d(20, 20)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
sup.filter(OptimizeWarning, "Solving system with option...")
res = linprog(c, A_ub=A, b_ub=b, method=self.method,
options={"ip": True, "disp": True})
# ip code is independent of sparse/dense
_assert_success(res, desired_fun=-64.049494229)
示例10: test_magic_square_sparse_no_presolve
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_magic_square_sparse_no_presolve(self):
# test linprog with a problem with a rank-deficient A_eq matrix
A, b, c, N = magic_square(3)
with suppress_warnings() as sup:
sup.filter(MatrixRankWarning, "Matrix is exactly singular")
sup.filter(OptimizeWarning, "Solving system with option...")
o = {key: self.options[key] for key in self.options}
o["presolve"] = False
res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
options=o, method=self.method)
_assert_success(res, desired_fun=1.730550597)
示例11: test_sparse_solve_options
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_sparse_solve_options(self):
A, b, c, N = magic_square(3)
with suppress_warnings() as sup:
sup.filter(OptimizeWarning, "A_eq does not appear...")
sup.filter(OptimizeWarning, "Invalid permc_spec option")
o = {key: self.options[key] for key in self.options}
permc_specs = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A',
'COLAMD', 'ekki-ekki-ekki')
for permc_spec in permc_specs:
o["permc_spec"] = permc_spec
res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
method=self.method, options=o)
_assert_success(res, desired_fun=1.730550597)
示例12: test_pcov
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_pcov(self):
xdata = np.array([0, 1, 2, 3, 4, 5])
ydata = np.array([1, 1, 5, 7, 8, 12])
sigma = np.array([1, 2, 1, 2, 1, 2])
def f(x, a, b):
return a*x + b
for method in ['lm', 'trf', 'dogbox']:
popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
method=method)
perr_scaled = np.sqrt(np.diag(pcov))
assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)
popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
method=method)
perr_scaled = np.sqrt(np.diag(pcov))
assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)
popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
absolute_sigma=True, method=method)
perr = np.sqrt(np.diag(pcov))
assert_allclose(perr, [0.30714756, 0.85045308], rtol=1e-3)
popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
absolute_sigma=True, method=method)
perr = np.sqrt(np.diag(pcov))
assert_allclose(perr, [3*0.30714756, 3*0.85045308], rtol=1e-3)
# infinite variances
def f_flat(x, a, b):
return a*x
pcov_expected = np.array([np.inf]*4).reshape(2, 2)
with suppress_warnings() as sup:
sup.filter(OptimizeWarning,
"Covariance of the parameters could not be estimated")
popt, pcov = curve_fit(f_flat, xdata, ydata, p0=[2, 0], sigma=sigma)
popt1, pcov1 = curve_fit(f, xdata[:2], ydata[:2], p0=[2, 0])
assert_(pcov.shape == (2, 2))
assert_array_equal(pcov, pcov_expected)
assert_(pcov1.shape == (2, 2))
assert_array_equal(pcov1, pcov_expected)
示例13: get_BM_EOS
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def get_BM_EOS(cryst, systems):
"""Calculate Birch-Murnaghan Equation of State for the crystal.
The B-M equation of state is defined by:
.. math::
P(V)= \\frac{B_0}{B'_0}\\left[
\\left({\\frac{V}{V_0}}\\right)^{-B'_0} - 1
\\right]
It's coefficients are estimated using n single-point structures ganerated
from the crystal (cryst) by the scan_volumes function between two relative
volumes. The BM EOS is fitted to the computed points by
least squares method. The returned value is a list of fitted
parameters: :math:`V_0, B_0, B_0'` if the fit succeded.
If the fitting fails the ``RuntimeError('Calculation failed')`` is raised.
The data from the calculation and fit is stored in the bm_eos and pv
members of cryst for future reference. You have to provide properly
optimized structures in cryst and systems list.
:param cryst: Atoms object, basic structure
:param systems: A list of calculated structures
:returns: tuple of EOS parameters :math:`V_0, B_0, B_0'`.
"""
pvdat = array([[r.get_volume(),
get_pressure(r.get_stress()),
norm(r.get_cell()[:, 0]),
norm(r.get_cell()[:, 1]),
norm(r.get_cell()[:, 2])] for r in systems]).T
# Estimate the initial guess assuming b0p=1
# Limiting volumes
v1 = min(pvdat[0])
v2 = max(pvdat[0])
# The pressure is falling with the growing volume
p2 = min(pvdat[1])
p1 = max(pvdat[1])
b0 = (p1*v1-p2*v2)/(v2-v1)
v0 = v1*(p1+b0)/b0
# Initial guess
p0 = [v0, b0, 1]
# Fitting
try :
p1, succ = optimize.curve_fit(BMEOS, pvdat[0], pvdat[1], p0)
except (ValueError, RuntimeError, optimize.OptimizeWarning) as ex:
raise RuntimeError('Calculation failed')
cryst.bm_eos = p1
cryst.pv = pvdat
return cryst.bm_eos
示例14: lstabsdev
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def lstabsdev(A, b):
r"""Least absolute deviations (LAD) linear regression.
Solve the linear regression problem
.. math::
\mathrm{argmin}_\mathbf{x} \; \left\| A \mathbf{x} - \mathbf{b}
\right\|_1 \;\;.
The interface is similar to that of :func:`numpy.linalg.lstsq` in
that `np.linalg.lstsq(A, b)` solves the same linear regression
problem, but with a least squares rather than a least absolute
deviations objective. Unlike :func:`numpy.linalg.lstsq`, `b` is
required to be a 1-d array. The solution is obtained via `mapping to
a linear program <https://stats.stackexchange.com/a/12564>`__.
Parameters
----------
A : (M, N) array_like
Regression coefficient matrix
b : (M,) array_like
Regression ordinate / dependent variable
Returns
-------
x : (N,) ndarray
Least absolute deviations solution
"""
M, N = A.shape
c = np.zeros((M + N,))
c[0:M] = 1.0
I = np.identity(M)
A_ub = np.hstack((np.vstack((-I, -I)), np.vstack((-A, A))))
b_ub = np.hstack((-b, b))
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=sco.OptimizeWarning)
res = sco.linprog(c, A_ub, b_ub)
if res.success is False:
raise ValueError('scipy.optimize.linprog failed with status %d' %
res.status)
return res.x[M:]
示例15: lstmaxdev
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def lstmaxdev(A, b):
r"""Least maximum deviation (least maximum error) linear regression.
Solve the linear regression problem
.. math::
\mathrm{argmin}_\mathbf{x} \; \left\| A \mathbf{x} - \mathbf{b}
\right\|_{\infty} \;\;.
The interface is similar to that of :func:`numpy.linalg.lstsq` in
that `np.linalg.lstsq(A, b)` solves the same linear regression
problem, but with a least squares rather than a least maximum
error objective. Unlike :func:`numpy.linalg.lstsq`, `b` is required
to be a 1-d array. The solution is obtained via `mapping to a linear
program <https://stats.stackexchange.com/a/12564>`__.
Parameters
----------
A : (M, N) array_like
Regression coefficient matrix
b : (M,) array_like
Regression ordinate / dependent variable
Returns
-------
x : (N,) ndarray
Least maximum deviation solution
"""
M, N = A.shape
c = np.zeros((N + 1,))
c[0] = 1.0
one = np.ones((M, 1))
A_ub = np.hstack((np.vstack((-one, -one)), np.vstack((-A, A))))
b_ub = np.hstack((-b, b))
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=sco.OptimizeWarning)
res = sco.linprog(c, A_ub, b_ub)
if res.success is False:
raise ValueError('scipy.optimize.linprog failed with status %d' %
res.status)
return res.x[1:]