當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.OptimizeWarning方法代碼示例

本文整理匯總了Python中scipy.optimize.OptimizeWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.OptimizeWarning方法的具體用法?Python optimize.OptimizeWarning怎麽用?Python optimize.OptimizeWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.OptimizeWarning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_enzo_example_b

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_enzo_example_b(self):
        # rescued from https://github.com/scipy/scipy/pull/218
        c = [2.8, 6.3, 10.8, -2.8, -6.3, -10.8]
        A_eq = [[-1, -1, -1, 0, 0, 0],
                [0, 0, 0, 1, 1, 1],
                [1, 0, 0, 1, 0, 0],
                [0, 1, 0, 0, 1, 0],
                [0, 0, 1, 0, 0, 1]]
        b_eq = [-0.5, 0.4, 0.3, 0.3, 0.3]
        if self.method == "simplex":
            # Including the callback here ensures the solution can be
            # calculated correctly.
            res = linprog(c=c, A_eq=A_eq, b_eq=b_eq,
                          method=self.method, options=self.options,
                          callback=lambda x, **kwargs: None)
        else:
            with suppress_warnings() as sup:
                sup.filter(OptimizeWarning, "A_eq does not appear...")
                res = linprog(c=c, A_eq=A_eq, b_eq=b_eq,
                              method=self.method, options=self.options)
        _assert_success(res, desired_fun=-1.77,
                        desired_x=[0.3, 0.2, 0.0, 0.0, 0.1, 0.3]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:24,代碼來源:test_linprog.py

示例2: test_linprog_optimizewarning

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_linprog_optimizewarning(self, dummy_linprog):
        """The linear program sometimes throws OptimizeWarning for matrices that
        are not full row rank. In such a case, penaltymodel-lp should give up
        and let a more sophisticated penaltymodel deal with the problem"""

        # Note: I'm using mock because it's difficult to think of a small ising
        #   system that is not full row rank. (i.e. need to consider linear states,
        #   quadratic states, offset and gap coefficients when building
        #   the non-full-row-rank matrix).
        dummy_linprog.return_value = OptimizeWarning

        # Placeholder problem
        nodes = ['r', 'a', 'n', 'd', 'o', 'm']
        values = {(1, 1, 1, 1, 1, 1), (1, 1, 0, 0, 0, 0)}

        with self.assertRaises(ValueError):
            lp.generate_bqm(nx.complete_graph(nodes), values, nodes,
                            catch_warnings=False) 
開發者ID:dwavesystems,項目名稱:penaltymodel,代碼行數:20,代碼來源:test_generation.py

示例3: make_cut

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def make_cut(self, in_node, out_node, score, MSF=None):
        """
        make a cut on the MSF inplace, provided the in_node, out_node, MSF, and score. 
        in_node: int, ID of the source node for the edge to be cut
        out_node: int, ID of the destination node for the edge to be cut
        score: float, the value of the score being cut. if the score is infinite, the cut is not made. 
        MSF: the spanning forest to use when making the cut. If not provided,
             uses the defualt tree in self.minimum_spanning_forest_
        """
        if MSF is None:
            MSF = self.minimum_spanning_forest_
        if np.isfinite(score):
            MSF[in_node, out_node] = 0
            MSF.eliminate_zeros()
            return (MSF, *cg.connected_components(MSF, directed=False))
        raise OptimizeWarning('Score of the ({},{}) cut is inf, the quorum is likely not met!') 
開發者ID:pysal,項目名稱:region,代碼行數:18,代碼來源:skater.py

示例4: test_network_flow_limited_capacity

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_network_flow_limited_capacity(self):
        # A network flow problem with supply and demand at nodes
        # and with costs and capacities along directed edges.
        # http://blog.sommer-forst.de/2013/04/10/
        cost = [2, 2, 1, 3, 1]
        bounds = [
            [0, 4],
            [0, 2],
            [0, 2],
            [0, 3],
            [0, 5]]
        n, p = -1, 1
        A_eq = [
            [n, n, 0, 0, 0],
            [p, 0, n, n, 0],
            [0, p, p, 0, n],
            [0, 0, 0, p, p]]
        b_eq = [-4, 0, 0, 4]

        if self.method == "simplex":
            # Including the callback here ensures the solution can be
            # calculated correctly, even when phase 1 terminated
            # with some of the artificial variables as pivots
            # (i.e. basis[:m] contains elements corresponding to
            # the artificial variables)
            res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
                          method=self.method, options=self.options,
                          callback=lambda x, **kwargs: None)
        else:
            with suppress_warnings() as sup:
                sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
                sup.filter(OptimizeWarning, "A_eq does not appear...")
                sup.filter(OptimizeWarning, "Solving system with option...")
                res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
                              method=self.method, options=self.options)
        _assert_success(res, desired_fun=14) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:38,代碼來源:test_linprog.py

示例5: test_unknown_options_or_solver

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_unknown_options_or_solver(self):
        c = np.array([-3, -2])
        A_ub = [[2, 1], [1, 1], [1, 0]]
        b_ub = [10, 8, 4]

        def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None,
              options={}):
            linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method,
                    options=options)

        _assert_warns(OptimizeWarning, f,
                      c, A_ub=A_ub, b_ub=b_ub, options=dict(spam='42'))

        assert_raises(ValueError, linprog,
                      c, A_ub=A_ub, b_ub=b_ub, method='ekki-ekki-ekki') 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:17,代碼來源:test_linprog.py

示例6: test_remove_redundancy_infeasibility

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_remove_redundancy_infeasibility(self):
        m, n = 10, 10
        c = np.random.rand(n)
        A0 = np.random.rand(m, n)
        b0 = np.random.rand(m)
        A0[-1, :] = 2 * A0[-2, :]
        b0[-1] *= -1
        with suppress_warnings() as sup:
            sup.filter(OptimizeWarning, "A_eq does not appear...")
            res = linprog(c, A_eq=A0, b_eq=b0,
                          method=self.method, options=self.options)
        _assert_infeasible(res) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:test_linprog.py

示例7: test_magic_square_bug_7044

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_magic_square_bug_7044(self):
        # test linprog with a problem with a rank-deficient A_eq matrix
        A, b, c, N = magic_square(3)
        with suppress_warnings() as sup:
            sup.filter(OptimizeWarning, "A_eq does not appear...")
            res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
                          method=self.method, options=self.options)
        _assert_success(res, desired_fun=1.730550597) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:10,代碼來源:test_linprog.py

示例8: test_bug_8664

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_bug_8664(self):
        # Weak test. Ideally should _detect infeasibility_ for all options.
        c = [4]
        A_ub = [[2], [5]]
        b_ub = [4, 4]
        A_eq = [[0], [-8], [9]]
        b_eq = [3, 2, 10]
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning)
            sup.filter(OptimizeWarning, "Solving system with option...")
            o = {key: self.options[key] for key in self.options}
            o["presolve"] = False
            res = linprog(c, A_ub, b_ub, A_eq, b_eq, options=o,
                          method=self.method)
        assert_(not res.success, "incorrectly reported success") 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:17,代碼來源:test_linprog.py

示例9: test_alternate_initial_point

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_alternate_initial_point(self):
        # Test with a rather large problem (400 variables,
        # 40 constraints) generated by https://gist.github.com/denis-bz/8647461
        # use "improved" initial point
        A, b, c = lpgen_2d(20, 20)
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
            sup.filter(OptimizeWarning, "Solving system with option...")
            res = linprog(c, A_ub=A, b_ub=b, method=self.method,
                          options={"ip": True, "disp": True})
            # ip code is independent of sparse/dense
        _assert_success(res, desired_fun=-64.049494229) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:test_linprog.py

示例10: test_magic_square_sparse_no_presolve

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_magic_square_sparse_no_presolve(self):
        # test linprog with a problem with a rank-deficient A_eq matrix
        A, b, c, N = magic_square(3)
        with suppress_warnings() as sup:
            sup.filter(MatrixRankWarning, "Matrix is exactly singular")
            sup.filter(OptimizeWarning, "Solving system with option...")
            o = {key: self.options[key] for key in self.options}
            o["presolve"] = False
            res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
                          options=o, method=self.method)
        _assert_success(res, desired_fun=1.730550597) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:13,代碼來源:test_linprog.py

示例11: test_sparse_solve_options

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_sparse_solve_options(self):
        A, b, c, N = magic_square(3)
        with suppress_warnings() as sup:
            sup.filter(OptimizeWarning, "A_eq does not appear...")
            sup.filter(OptimizeWarning, "Invalid permc_spec option")
            o = {key: self.options[key] for key in self.options}
            permc_specs = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A',
                           'COLAMD', 'ekki-ekki-ekki')
            for permc_spec in permc_specs:
                o["permc_spec"] = permc_spec
                res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
                              method=self.method, options=o)
                _assert_success(res, desired_fun=1.730550597) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:15,代碼來源:test_linprog.py

示例12: test_pcov

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def test_pcov(self):
        xdata = np.array([0, 1, 2, 3, 4, 5])
        ydata = np.array([1, 1, 5, 7, 8, 12])
        sigma = np.array([1, 2, 1, 2, 1, 2])

        def f(x, a, b):
            return a*x + b

        for method in ['lm', 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
                                   method=method)
            perr_scaled = np.sqrt(np.diag(pcov))
            assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
                                   method=method)
            perr_scaled = np.sqrt(np.diag(pcov))
            assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
                                   absolute_sigma=True, method=method)
            perr = np.sqrt(np.diag(pcov))
            assert_allclose(perr, [0.30714756, 0.85045308], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
                                   absolute_sigma=True, method=method)
            perr = np.sqrt(np.diag(pcov))
            assert_allclose(perr, [3*0.30714756, 3*0.85045308], rtol=1e-3)

        # infinite variances

        def f_flat(x, a, b):
            return a*x

        pcov_expected = np.array([np.inf]*4).reshape(2, 2)

        with suppress_warnings() as sup:
            sup.filter(OptimizeWarning,
                       "Covariance of the parameters could not be estimated")
            popt, pcov = curve_fit(f_flat, xdata, ydata, p0=[2, 0], sigma=sigma)
            popt1, pcov1 = curve_fit(f, xdata[:2], ydata[:2], p0=[2, 0])

        assert_(pcov.shape == (2, 2))
        assert_array_equal(pcov, pcov_expected)

        assert_(pcov1.shape == (2, 2))
        assert_array_equal(pcov1, pcov_expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:49,代碼來源:test_minpack.py

示例13: get_BM_EOS

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def get_BM_EOS(cryst, systems):
    """Calculate Birch-Murnaghan Equation of State for the crystal.

    The B-M equation of state is defined by:

    .. math::
       P(V)= \\frac{B_0}{B'_0}\\left[
       \\left({\\frac{V}{V_0}}\\right)^{-B'_0} - 1
       \\right]

    It's coefficients are estimated using n single-point structures ganerated
    from the crystal (cryst) by the scan_volumes function between two relative
    volumes. The BM EOS is fitted to the computed points by
    least squares method. The returned value is a list of fitted
    parameters: :math:`V_0, B_0, B_0'` if the fit succeded.
    If the fitting fails the ``RuntimeError('Calculation failed')`` is raised.
    The data from the calculation and fit is stored in the bm_eos and pv
    members of cryst for future reference. You have to provide properly
    optimized structures in cryst and systems list.

    :param cryst: Atoms object, basic structure
    :param systems: A list of calculated structures

    :returns: tuple of EOS parameters :math:`V_0, B_0, B_0'`.
    """

    pvdat = array([[r.get_volume(),
                    get_pressure(r.get_stress()),
                    norm(r.get_cell()[:, 0]),
                    norm(r.get_cell()[:, 1]),
                    norm(r.get_cell()[:, 2])] for r in systems]).T

    # Estimate the initial guess assuming b0p=1
    # Limiting volumes
    v1 = min(pvdat[0])
    v2 = max(pvdat[0])

    # The pressure is falling with the growing volume
    p2 = min(pvdat[1])
    p1 = max(pvdat[1])
    b0 = (p1*v1-p2*v2)/(v2-v1)
    v0 = v1*(p1+b0)/b0

    # Initial guess
    p0 = [v0, b0, 1]

    # Fitting
    try :
        p1, succ = optimize.curve_fit(BMEOS, pvdat[0], pvdat[1], p0)
    except (ValueError, RuntimeError, optimize.OptimizeWarning) as ex:
        raise RuntimeError('Calculation failed')

    cryst.bm_eos = p1
    cryst.pv = pvdat
    return cryst.bm_eos 
開發者ID:jochym,項目名稱:Elastic,代碼行數:57,代碼來源:elastic.py

示例14: lstabsdev

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def lstabsdev(A, b):
    r"""Least absolute deviations (LAD) linear regression.

    Solve the linear regression problem

    .. math::
      \mathrm{argmin}_\mathbf{x} \; \left\| A \mathbf{x} - \mathbf{b}
      \right\|_1 \;\;.

    The interface is similar to that of :func:`numpy.linalg.lstsq` in
    that `np.linalg.lstsq(A, b)` solves the same linear regression
    problem, but with a least squares rather than a least absolute
    deviations objective. Unlike :func:`numpy.linalg.lstsq`, `b` is
    required to be a 1-d array. The solution is obtained via `mapping to
    a linear program <https://stats.stackexchange.com/a/12564>`__.

    Parameters
    ----------
    A : (M, N) array_like
      Regression coefficient matrix
    b : (M,) array_like
      Regression ordinate / dependent variable

    Returns
    -------
    x : (N,) ndarray
      Least absolute deviations solution
    """

    M, N = A.shape
    c = np.zeros((M + N,))
    c[0:M] = 1.0
    I = np.identity(M)
    A_ub = np.hstack((np.vstack((-I, -I)), np.vstack((-A, A))))
    b_ub = np.hstack((-b, b))
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=sco.OptimizeWarning)
        res = sco.linprog(c, A_ub, b_ub)
    if res.success is False:
        raise ValueError('scipy.optimize.linprog failed with status %d' %
                         res.status)
    return res.x[M:] 
開發者ID:bwohlberg,項目名稱:sporco,代碼行數:44,代碼來源:interp.py

示例15: lstmaxdev

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import OptimizeWarning [as 別名]
def lstmaxdev(A, b):
    r"""Least maximum deviation (least maximum error) linear regression.

    Solve the linear regression problem

    .. math::
      \mathrm{argmin}_\mathbf{x} \; \left\| A \mathbf{x} - \mathbf{b}
      \right\|_{\infty} \;\;.

    The interface is similar to that of :func:`numpy.linalg.lstsq` in
    that `np.linalg.lstsq(A, b)` solves the same linear regression
    problem, but with a least squares rather than a least maximum
    error objective. Unlike :func:`numpy.linalg.lstsq`, `b` is required
    to be a 1-d array. The solution is obtained via `mapping to a linear
    program <https://stats.stackexchange.com/a/12564>`__.

    Parameters
    ----------
    A : (M, N) array_like
      Regression coefficient matrix
    b : (M,) array_like
      Regression ordinate / dependent variable

    Returns
    -------
    x : (N,) ndarray
      Least maximum deviation solution
    """

    M, N = A.shape
    c = np.zeros((N + 1,))
    c[0] = 1.0
    one = np.ones((M, 1))
    A_ub = np.hstack((np.vstack((-one, -one)), np.vstack((-A, A))))
    b_ub = np.hstack((-b, b))
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=sco.OptimizeWarning)
        res = sco.linprog(c, A_ub, b_ub)
    if res.success is False:
        raise ValueError('scipy.optimize.linprog failed with status %d' %
                         res.status)
    return res.x[1:] 
開發者ID:bwohlberg,項目名稱:sporco,代碼行數:44,代碼來源:interp.py


注:本文中的scipy.optimize.OptimizeWarning方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。