當前位置: 首頁>>代碼示例>>Python>>正文


Python scipy.ones方法代碼示例

本文整理匯總了Python中scipy.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.ones方法的具體用法?Python scipy.ones怎麽用?Python scipy.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy的用法示例。


在下文中一共展示了scipy.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_download

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def test_download(tmpdata):
    """Test that fetch_mldata is able to download and cache a data set."""
    _urlopen_ref = datasets.mldata.urlopen
    datasets.mldata.urlopen = mock_mldata_urlopen({
        'mock': {
            'label': sp.ones((150,)),
            'data': sp.ones((150, 4)),
        },
    })
    try:
        mock = assert_warns(DeprecationWarning, fetch_mldata,
                            'mock', data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "target", "data"]:
            assert_in(n, mock)

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.HTTPError,
                      assert_warns, DeprecationWarning,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_mldata.py

示例2: _flat_field

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def _flat_field(X, uniformity_thresh):
    """."""

    Xhoriz = _low_frequency_horiz(X, sigma=4.0)
    Xhorizp = _low_frequency_horiz(X, sigma=3.0)
    nl, nb, nc = X.shape
    FF = s.zeros((nb, nc))
    use_ff = s.ones((X.shape[0], X.shape[2])) > 0
    for b in range(nb):
        xsub = Xhoriz[:, b, :]
        xsubp = Xhorizp[:, b, :]
        mu = xsub.mean(axis=0)
        dists = abs(xsub - mu)
        distsp = abs(xsubp - mu)
        thresh = _percentile(dists.flatten(), 90.0)
        uthresh = dists * uniformity_thresh
        #use       = s.logical_and(dists<thresh, abs(dists-distsp) < uthresh)
        use = dists < thresh
        FF[b, :] = ((xsub*use).sum(axis=0)/use.sum(axis=0)) / \
            ((X[:, b, :]*use).sum(axis=0)/use.sum(axis=0))
        use_ff = s.logical_and(use_ff, use)
    return FF, Xhoriz, Xhorizp, s.array(use_ff) 
開發者ID:isofit,項目名稱:isofit,代碼行數:24,代碼來源:instrument_model.py

示例3: __MR_boundary_indictor

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def __MR_boundary_indictor(self,labels):
        s = sp.amax(labels)+1
        up_indictor = (sp.ones((s,1))).astype(float)
        right_indictor = (sp.ones((s,1))).astype(float)
        low_indictor = (sp.ones((s,1))).astype(float)
        left_indictor = (sp.ones((s,1))).astype(float)
    
        upper_ids = sp.unique(labels[0,:]).astype(int)
        right_ids = sp.unique(labels[:,labels.shape[1]-1]).astype(int)
        low_ids = sp.unique(labels[labels.shape[0]-1,:]).astype(int)
        left_ids = sp.unique(labels[:,0]).astype(int)

        up_indictor[upper_ids] = 0.0
        right_indictor[right_ids] = 0.0
        low_indictor[low_ids] = 0.0
        left_indictor[left_ids] = 0.0

        return up_indictor,right_indictor,low_indictor,left_indictor 
開發者ID:ruanxiang,項目名稱:mr_saliency,代碼行數:20,代碼來源:MR.py

示例4: test_download

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def test_download():
    """Test that fetch_mldata is able to download and cache a data set."""

    _urlopen_ref = datasets.mldata.urlopen
    datasets.mldata.urlopen = mock_mldata_urlopen({
        'mock': {
            'label': sp.ones((150,)),
            'data': sp.ones((150, 4)),
        },
    })
    try:
        mock = fetch_mldata('mock', data_home=tmpdir)
        for n in ["COL_NAMES", "DESCR", "target", "data"]:
            assert_in(n, mock)

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.HTTPError,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:24,代碼來源:test_mldata.py

示例5: ElasticRod

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def ElasticRod(n):
    # Fixed-free elastic rod
    L = 1.0
    le = L/n
    rho = 7.85e3
    S = 1.e-4
    E = 2.1e11
    mass = rho*S*le/6.
    k = E*S/le
    A = k*(diag(r_[2.*ones(n-1),1])-diag(ones(n-1),1)-diag(ones(n-1),-1))
    B = mass*(diag(r_[4.*ones(n-1),2])+diag(ones(n-1),1)+diag(ones(n-1),-1))
    return A,B 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:14,代碼來源:test_lobpcg.py

示例6: test_trivial

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def test_trivial():
    n = 5
    X = ones((n, 1))
    A = eye(n)
    compare_solutions(A, None, n) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:7,代碼來源:test_lobpcg.py

示例7: test_regression

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def test_regression():
    # https://mail.python.org/pipermail/scipy-user/2010-October/026944.html
    n = 10
    X = np.ones((n, 1))
    A = np.identity(n)
    w, V = lobpcg(A, X)
    assert_allclose(w, [1]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_lobpcg.py

示例8: __init__

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def __init__(self, distance_pairs):

        self.data = distance_pairs
        self._n = len(self.data)
        self._processed = scipy.zeros((self._n, 1), dtype=bool)
        self._reachability = scipy.ones(self._n) * scipy.inf
        self._core_dist = scipy.ones(self._n) * scipy.nan
        self._index = scipy.array(range(self._n))
        self._nneighbors = scipy.ones(self._n, dtype=int)*self._n
        self._cluster_id = -scipy.ones(self._n, dtype=int)
        self._is_core = scipy.ones(self._n, dtype=bool)
        self._ordered_list = [] 
開發者ID:ahotovec,項目名稱:REDPy,代碼行數:14,代碼來源:optics.py

示例9: __MR_get_adj_loop

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def __MR_get_adj_loop(self, labels):
        s = sp.amax(labels) + 1
        adj = np.ones((s, s), np.bool)

        for i in range(labels.shape[0] - 1):
            for j in range(labels.shape[1] - 1):
                if labels[i, j] != labels[i+1, j]:
                    adj[labels[i, j],       labels[i+1, j]]              = False
                    adj[labels[i+1, j],   labels[i, j]]                  = False
                if labels[i, j] != labels[i, j + 1]:
                    adj[labels[i, j],       labels[i, j+1]]              = False
                    adj[labels[i, j+1],   labels[i, j]]                  = False
                if labels[i, j] != labels[i + 1, j + 1]:
                    adj[labels[i, j]        ,  labels[i+1, j+1]]       = False
                    adj[labels[i+1, j+1],  labels[i, j]]               = False
                if labels[i + 1, j] != labels[i, j + 1]:
                    adj[labels[i+1, j],   labels[i, j+1]]              = False
                    adj[labels[i, j+1],   labels[i+1, j]]              = False
        
        upper_ids = sp.unique(labels[0,:]).astype(int)
        right_ids = sp.unique(labels[:,labels.shape[1]-1]).astype(int)
        low_ids = sp.unique(labels[labels.shape[0]-1,:]).astype(int)
        left_ids = sp.unique(labels[:,0]).astype(int)
        
        bd = np.append(upper_ids, right_ids)
        bd = np.append(bd, low_ids)
        bd = sp.unique(np.append(bd, left_ids))
        
        for i in range(len(bd)):
            for j in range(i + 1, len(bd)):
                adj[bd[i], bd[j]] = False
                adj[bd[j], bd[i]] = False

        return adj 
開發者ID:ruanxiang,項目名稱:mr_saliency,代碼行數:36,代碼來源:MR.py

示例10: pixMorphSequence_mask_seed_fill_holes

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def pixMorphSequence_mask_seed_fill_holes(self, I):
        Imask = self.reduction_T_1(I)
        Imask = self.reduction_T_1(Imask)
        Imask = ndimage.binary_fill_holes(Imask)
        Iseed = self.reduction_T_4(Imask)
        Iseed = self.reduction_T_3(Iseed)
        mask = array(ones((5, 5)), dtype=int)
        Iseed = ndimage.binary_opening(Iseed, mask)
        Iseed = self.expansion(Iseed, Imask.shape)
        return Imask, Iseed 
開發者ID:OCR-D,項目名稱:ocrd_anybaseocr,代碼行數:12,代碼來源:ocrd_anybaseocr_tiseg.py

示例11: pixSeedfillBinary

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def pixSeedfillBinary(self, Imask, Iseed):
        Iseedfill = copy.deepcopy(Iseed)
        s = ones((3, 3))
        Ijmask, k = ndimage.label(Imask, s)
        Ijmask2 = Ijmask * Iseedfill
        A = list(unique(Ijmask2))
        A.remove(0)
        for i in range(0, len(A)):
            x, y = where(Ijmask == A[i])
            Iseedfill[x, y] = 1
        return Iseedfill 
開發者ID:OCR-D,項目名稱:ocrd_anybaseocr,代碼行數:13,代碼來源:ocrd_anybaseocr_tiseg.py

示例12: tvardry

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def tvardry(rho = scipy.array([]),\
    cp = scipy.array([]),\
    T = scipy.array([]),\
    sigma_t = scipy.array([]),\
    z= float(),\
    d= 0.0):
    '''Function to calculate the sensible heat flux (H, in W/m2) from high
    frequency temperature measurements and its standard deviation. 
    Source: H.F. Vugts, M.J. Waterloo, F.J. Beekman, K.F.A. Frumau and L.A.
    Bruijnzeel. The temperature variance method: a powerful tool in the
    estimation of actual evaporation rates. In J. S. Gladwell, editor, 
    Hydrology of Warm Humid Regions, Proc. of the Yokohama Symp., IAHS
    Publication No. 216, pages 251-260, July 1993.
    
    NOTE: This function holds only for free convective conditions when C2*z/L
    >>1, where L is the Obhukov length.
    
    Input:
        - rho: (array of) air density values [kg m-3]
        - cp: (array of) specific heat at constant temperature values [J kg-1 K-1]
        - T: (array of) temperature data [Celsius]
        - sigma_t: (array of) standard deviation of temperature data [Celsius]
        - z: temperature measurement height above the surface [m]
        - d: displacement height due to vegetation, default is zero [m]
        
    Output:
        - H: (array of) sensible heat flux [W/m2]
        
    Example:
        >>> H=tvardry(rho,cp,T,sigma_t,z,d)
        >>> H
        35.139511191461651
        >>>
    '''
    k = 0.40 # von Karman constant
    g = 9.81 # acceleration due to gravity [m/s^2]
    C1 =  2.9 # De Bruin et al., 1992
    C2 = 28.4 # De Bruin et al., 1992
    # L= Obhukov-length [m]
     
    #Free Convection Limit
    H = rho * cp * scipy.sqrt((sigma_t/C1)**3 * k * g * (z-d) / (T+273.15) * C2)
    #else:
    # including stability correction
    #zoverL = z/L
    #tvardry = rho * cp * scipy.sqrt((sigma_t/C1)**3 * k*g*(z-d) / (T+273.15) *\
    #          (1-C2*z/L)/(-1*z/L))
    
    #Check if we get complex numbers (square root of negative value) and remove 
    #I = find(zoL >= 0 | H.imag != 0);
    #H(I) = scipy.ones(size(I))*NaN;
        
    return H # sensible heat flux 
開發者ID:Kirubaharan,項目名稱:hydrology,代碼行數:55,代碼來源:evaplib.py

示例13: _check_fiedler

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def _check_fiedler(n, p):
    # This is not necessarily the recommended way to find the Fiedler vector.
    np.random.seed(1234)
    col = np.zeros(n)
    col[1] = 1
    A = toeplitz(col)
    D = np.diag(A.sum(axis=1))
    L = D - A
    # Compute the full eigendecomposition using tricks, e.g.
    # http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
    tmp = np.pi * np.arange(n) / n
    analytic_w = 2 * (1 - np.cos(tmp))
    analytic_V = np.cos(np.outer(np.arange(n) + 1/2, tmp))
    _check_eigen(L, analytic_w, analytic_V)
    # Compute the full eigendecomposition using eigh.
    eigh_w, eigh_V = eigh(L)
    _check_eigen(L, eigh_w, eigh_V)
    # Check that the first eigenvalue is near zero and that the rest agree.
    assert_array_less(np.abs([eigh_w[0], analytic_w[0]]), 1e-14)
    assert_allclose(eigh_w[1:], analytic_w[1:])

    # Check small lobpcg eigenvalues.
    X = analytic_V[:, :p]
    lobpcg_w, lobpcg_V = lobpcg(L, X, largest=False)
    assert_equal(lobpcg_w.shape, (p,))
    assert_equal(lobpcg_V.shape, (n, p))
    _check_eigen(L, lobpcg_w, lobpcg_V)
    assert_array_less(np.abs(np.min(lobpcg_w)), 1e-14)
    assert_allclose(np.sort(lobpcg_w)[1:], analytic_w[1:p])

    # Check large lobpcg eigenvalues.
    X = analytic_V[:, -p:]
    lobpcg_w, lobpcg_V = lobpcg(L, X, largest=True)
    assert_equal(lobpcg_w.shape, (p,))
    assert_equal(lobpcg_V.shape, (n, p))
    _check_eigen(L, lobpcg_w, lobpcg_V)
    assert_allclose(np.sort(lobpcg_w), analytic_w[-p:])

    # Look for the Fiedler vector using good but not exactly correct guesses.
    fiedler_guess = np.concatenate((np.ones(n//2), -np.ones(n-n//2)))
    X = np.vstack((np.ones(n), fiedler_guess)).T
    lobpcg_w, lobpcg_V = lobpcg(L, X, largest=False)
    # Mathematically, the smaller eigenvalue should be zero
    # and the larger should be the algebraic connectivity.
    lobpcg_w = np.sort(lobpcg_w)
    assert_allclose(lobpcg_w, analytic_w[:2], atol=1e-14) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:48,代碼來源:test_lobpcg.py

示例14: test_Gillespie_complex_contagion

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def test_Gillespie_complex_contagion(self):
        def transition_rate(G, node, status, parameters):
            # this function needs to return the rate at which ``node`` changes status
            #
            r = parameters[0]
            if status[node] == 'S' and len([nbr for nbr in G.neighbors(node) if status[nbr] == 'I']) > 1:
                return 1
            else:  # status[node] might be 0 or length might be 0 or 1.
                return 0

        def transition_choice(G, node, status, parameters):
            # this function needs to return the new status of node.  We assume going
            # in that we have already calculated it is changing status.
            #
            # this function could be more elaborate if there were different
            # possible transitions that could happen.  However, for this model,
            # the 'I' nodes aren't changing status, and the 'S' ones are changing to 'I'
            # So if we're in this function, the node must be 'S' and becoming 'I'
            #
            return 'I'

        def get_influence_set(G, node, status, parameters):
            # this function needs to return any node whose rates might change
            # because ``node`` has just changed status.  That is, which nodes
            # might ``node`` influence?
            #
            # For our models the only nodes a node might affect are the susceptible neighbors.

            return {nbr for nbr in G.neighbors(node) if status[nbr] == 'S'}

        parameters = (2,)  # this is the threshold.  Note the comma.  It is needed
        # for python to realize this is a 1-tuple, not just a number.
        # ``parameters`` is sent as a tuple so we need the comma.

        N = 60000
        deg_dist = [2, 4, 6] * int(N / 3)
        G = nx.configuration_model(deg_dist)

        for rho in np.linspace(3. / 80, 7. / 80, 8):  # 8 values from 3/80 to 7/80.
            print(rho)
            IC = defaultdict(lambda: 'S')
            for node in G.nodes():
                if np.random.random() < rho:  # there are faster ways to do this random selection
                    IC[node] = 'I'

            t, S, I = EoN.Gillespie_complex_contagion(G, transition_rate, transition_choice,
                                                      get_influence_set, IC, return_statuses=('S', 'I'),
                                                      parameters=parameters)

            plt.plot(t, I)

        plt.savefig('test_Gillespie_complex_contagion') 
開發者ID:springer-math,項目名稱:Mathematics-of-Epidemics-on-Networks,代碼行數:54,代碼來源:test_from_joel.py

示例15: remap

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ones [as 別名]
def remap(inputfile, labels, outputfile, flag, chunksize):
    """."""

    ref_file = inputfile
    lbl_file = labels
    out_file = outputfile
    nchunk = chunksize

    ref_img = envi.open(ref_file+'.hdr', ref_file)
    ref_meta = ref_img.metadata
    ref_mm = ref_img.open_memmap(interleave='source', writable=False)
    ref = s.array(ref_mm[:, :])

    lbl_img = envi.open(lbl_file+'.hdr', lbl_file)
    lbl_meta = lbl_img.metadata
    labels = lbl_img.read_band(0)

    nl = int(lbl_meta['lines'])
    ns = int(lbl_meta['samples'])
    nb = int(ref_meta['bands'])

    out_meta = dict([(k, v) for k, v in ref_meta.items()])

    out_meta["samples"] = ns
    out_meta["bands"] = nb
    out_meta["lines"] = nl
    out_meta['data type'] = ref_meta['data type']
    out_meta["interleave"] = "bil"

    out_img = envi.create_image(out_file+'.hdr',  metadata=out_meta,
                                ext='', force=True)
    out_mm = out_img.open_memmap(interleave='source', writable=True)

    # Iterate through image "chunks," restoring as we go
    for lstart in s.arange(0, nl, nchunk):
        print(lstart)
        del out_mm
        out_mm = out_img.open_memmap(interleave='source', writable=True)

        # Which labels will we extract? ignore zero index
        lend = min(lstart+nchunk, nl)

        lbl = labels[lstart:lend, :]
        out = flag * s.ones((lbl.shape[0], nb, lbl.shape[1]))
        for row in range(lbl.shape[0]):
            for col in range(lbl.shape[1]):
                out[row, :, col] = s.squeeze(ref[int(lbl[row, col]), :])

        out_mm[lstart:lend, :, :] = out 
開發者ID:isofit,項目名稱:isofit,代碼行數:51,代碼來源:remap.py


注:本文中的scipy.ones方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。