當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.uniform_filter方法代碼示例

本文整理匯總了Python中scipy.ndimage.uniform_filter方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.uniform_filter方法的具體用法?Python ndimage.uniform_filter怎麽用?Python ndimage.uniform_filter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.uniform_filter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: filter

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def filter(self, signal):
        """Filter a given signal with a choice of filter type (self.lres_filter).
        """
        signal = signal.copy()
        filter_size = [1, self.downsamp_t*2-1, self.downsamp_xz*2-1, self.downsamp_xz*2-1]

        if self.lres_filter == 'none' or (not self.lres_filter):
            output = signal
        elif self.lres_filter == 'gaussian':
            sigma = [0, int(self.downsamp_t/2), int(self.downsamp_xz/2), int(self.downsamp_xz/2)]
            output = ndimage.gaussian_filter(signal, sigma=sigma)
        elif self.lres_filter == 'uniform':
            output = ndimage.uniform_filter(signal, size=filter_size)
        elif self.lres_filter == 'median':
            output = ndimage.median_filter(signal, size=filter_size)
        elif self.lres_filter == 'maximum':
            output = ndimage.maximum_filter(signal, size=filter_size)
        else:
            raise NotImplementedError(
                "lres_filter must be one of none/gaussian/uniform/median/maximum")
        return output 
開發者ID:maxjiang93,項目名稱:space_time_pde,代碼行數:23,代碼來源:dataloader_spacetime.py

示例2: find_paws

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def find_paws(data, smooth_radius = 5, threshold = 0.0001):
    # http://stackoverflow.com/questions/4087919/how-can-i-improve-my-paw-detection
    """Detects and isolates contiguous regions in the input array"""
    # Blur the input data a bit so the paws have a continous footprint
    data = ndimage.uniform_filter(data, smooth_radius)
    # Threshold the blurred data (this needs to be a bit > 0 due to the blur)
    thresh = data > threshold
    # Fill any interior holes in the paws to get cleaner regions...
    filled = ndimage.morphology.binary_fill_holes(thresh)
    # Label each contiguous paw
    coded_paws, num_paws = ndimage.label(filled)
    # Isolate the extent of each paw
    # find_objects returns a list of 2-tuples: (slice(...), slice(...))
    # which represents a rectangular box around the object
    data_slices = ndimage.find_objects(coded_paws)
    return data_slices 
開發者ID:leokarlin,項目名稱:LaSO,代碼行數:18,代碼來源:tightcrop.py

示例3: rase

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def rase(GT,P,ws=8):
	"""calculates relative average spectral error (rase).

	:param GT: first (original) input image.
	:param P: second (deformed) input image.
	:param ws: sliding window size (default = 8).

	:returns:  float -- rase value.
	"""
	GT,P = _initial_check(GT,P)

	_,rmse_map = rmse_sw(GT,P,ws)

	GT_means = uniform_filter(GT, ws)/ws**2


	N = GT.shape[2]
	M = np.sum(GT_means,axis=2)/N
	rase_map = (100./M) * np.sqrt( np.sum(rmse_map**2,axis=2) / N )

	s = int(np.round(ws/2))
	return np.mean(rase_map[s:-s,s:-s]) 
開發者ID:andrewekhalel,項目名稱:sewar,代碼行數:24,代碼來源:full_ref.py

示例4: test_uniform02

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_uniform02(self):
        array = numpy.array([1, 2, 3])
        filter_shape = [0]
        output = ndimage.uniform_filter(array, filter_shape)
        assert_array_almost_equal(array, output) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:7,代碼來源:test_ndimage.py

示例5: test_uniform03

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_uniform03(self):
        array = numpy.array([1, 2, 3])
        filter_shape = [1]
        output = ndimage.uniform_filter(array, filter_shape)
        assert_array_almost_equal(array, output) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:7,代碼來源:test_ndimage.py

示例6: test_uniform04

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_uniform04(self):
        array = numpy.array([2, 4, 6])
        filter_shape = [2]
        output = ndimage.uniform_filter(array, filter_shape)
        assert_array_almost_equal([2, 3, 5], output) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:7,代碼來源:test_ndimage.py

示例7: test_uniform05

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_uniform05(self):
        array = []
        filter_shape = [1]
        output = ndimage.uniform_filter(array, filter_shape)
        assert_array_almost_equal([], output) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:7,代碼來源:test_ndimage.py

示例8: test_uniform06

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_uniform06(self):
        filter_shape = [2, 2]
        for type1 in self.types:
            array = numpy.array([[4, 8, 12],
                                    [16, 20, 24]], type1)
            for type2 in self.types:
                output = ndimage.uniform_filter(array,
                                        filter_shape, output=type2)
                assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
                assert_equal(output.dtype.type, type2) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:12,代碼來源:test_ndimage.py

示例9: moving_mean_filter_2

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def moving_mean_filter_2(data, window):

    ''' window is a 2 element tuple with the moving window dimensions (rows, columns)'''
    data = uniform_filter(data, size=window, mode='mirror')

    return data 
開發者ID:hectornieto,項目名稱:pyTSEB,代碼行數:8,代碼來源:dis_TSEB.py

示例10: test_uniform06

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_uniform06(self):
        filter_shape = [2, 2]
        for type1 in self.types:
            array = numpy.array([[4, 8, 12],
                                 [16, 20, 24]], type1)
            for type2 in self.types:
                output = ndimage.uniform_filter(
                    array, filter_shape, output=type2)
                assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
                assert_equal(output.dtype.type, type2) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:test_ndimage.py

示例11: test_multiple_modes

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_multiple_modes():
    # Test that the filters with multiple mode cababilities for different
    # dimensions give the same result as applying a single mode.
    arr = np.array([[1., 0., 0.],
                    [1., 1., 0.],
                    [0., 0., 0.]])

    mode1 = 'reflect'
    mode2 = ['reflect', 'reflect']

    assert_equal(sndi.gaussian_filter(arr, 1, mode=mode1),
                 sndi.gaussian_filter(arr, 1, mode=mode2))
    assert_equal(sndi.prewitt(arr, mode=mode1),
                 sndi.prewitt(arr, mode=mode2))
    assert_equal(sndi.sobel(arr, mode=mode1),
                 sndi.sobel(arr, mode=mode2))
    assert_equal(sndi.laplace(arr, mode=mode1),
                 sndi.laplace(arr, mode=mode2))
    assert_equal(sndi.gaussian_laplace(arr, 1, mode=mode1),
                 sndi.gaussian_laplace(arr, 1, mode=mode2))
    assert_equal(sndi.maximum_filter(arr, size=5, mode=mode1),
                 sndi.maximum_filter(arr, size=5, mode=mode2))
    assert_equal(sndi.minimum_filter(arr, size=5, mode=mode1),
                 sndi.minimum_filter(arr, size=5, mode=mode2))
    assert_equal(sndi.gaussian_gradient_magnitude(arr, 1, mode=mode1),
                 sndi.gaussian_gradient_magnitude(arr, 1, mode=mode2))
    assert_equal(sndi.uniform_filter(arr, 5, mode=mode1),
                 sndi.uniform_filter(arr, 5, mode=mode2)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:30,代碼來源:test_filters.py

示例12: test_multiple_modes_sequentially

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_multiple_modes_sequentially():
    # Test that the filters with multiple mode cababilities for different
    # dimensions give the same result as applying the filters with
    # different modes sequentially
    arr = np.array([[1., 0., 0.],
                    [1., 1., 0.],
                    [0., 0., 0.]])

    modes = ['reflect', 'wrap']

    expected = sndi.gaussian_filter1d(arr, 1, axis=0, mode=modes[0])
    expected = sndi.gaussian_filter1d(expected, 1, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.gaussian_filter(arr, 1, mode=modes))

    expected = sndi.uniform_filter1d(arr, 5, axis=0, mode=modes[0])
    expected = sndi.uniform_filter1d(expected, 5, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.uniform_filter(arr, 5, mode=modes))

    expected = sndi.maximum_filter1d(arr, size=5, axis=0, mode=modes[0])
    expected = sndi.maximum_filter1d(expected, size=5, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.maximum_filter(arr, size=5, mode=modes))

    expected = sndi.minimum_filter1d(arr, size=5, axis=0, mode=modes[0])
    expected = sndi.minimum_filter1d(expected, size=5, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.minimum_filter(arr, size=5, mode=modes)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:31,代碼來源:test_filters.py

示例13: test_multiple_modes_uniform

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def test_multiple_modes_uniform():
    # Test uniform filter for multiple extrapolation modes
    arr = np.array([[1., 0., 0.],
                    [1., 1., 0.],
                    [0., 0., 0.]])

    expected = np.array([[0.32, 0.40, 0.48],
                         [0.20, 0.28, 0.32],
                         [0.28, 0.32, 0.40]])

    modes = ['reflect', 'wrap']

    assert_almost_equal(expected,
                        sndi.uniform_filter(arr, 5, mode=modes)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:16,代碼來源:test_filters.py

示例14: execute

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def execute(self, image_array: ndarray):
        return ndimage.uniform_filter(image_array, size=(11, 11, 1)) 
開發者ID:tomahim,項目名稱:py-image-dataset-generator,代碼行數:4,代碼來源:operations.py

示例15: _rmse_sw_single

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import uniform_filter [as 別名]
def _rmse_sw_single (GT,P,ws):	
	errors = (GT-P)**2
	errors = uniform_filter(errors.astype(np.float64),ws)
	rmse_map = np.sqrt(errors)
	s = int(np.round((ws/2)))
	return np.mean(rmse_map[s:-s,s:-s]),rmse_map 
開發者ID:andrewekhalel,項目名稱:sewar,代碼行數:8,代碼來源:full_ref.py


注:本文中的scipy.ndimage.uniform_filter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。