當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.rotate方法代碼示例

本文整理匯總了Python中scipy.ndimage.rotate方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.rotate方法的具體用法?Python ndimage.rotate怎麽用?Python ndimage.rotate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.rotate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: rotate_images

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def rotate_images(images: np.ndarray,
                  angles: np.ndarray) -> np.ndarray:
    """
    Function to rotate all images in clockwise direction.

    Parameters
    ----------
    images : numpy.ndarray
        Stack of images (3D).
    angles : numpy.ndarray
        Rotation angles (deg).

    Returns
    -------
    numpy.ndarray
        Rotated images.
    """

    im_rot = np.zeros(images.shape)

    for i, item in enumerate(angles):
        im_rot[i, ] = rotate(input=images[i, ], angle=item, reshape=False)

    return im_rot 
開發者ID:PynPoint,項目名稱:PynPoint,代碼行數:26,代碼來源:image.py

示例2: decode_image

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def decode_image(fp, force_rgb=True):
  """Decode the given image to a numpy array."""
  im = PIL.Image.open(fp)

  # correct rotation
  orientation_key = 0x0112
  if hasattr(im, "_getexif") and im._getexif():
    orientation = im._getexif().get(orientation_key, 0)
    if orientation == 3:
      im = im.rotate(180, expand=True)
    elif orientation == 6:
      im = im.rotate(270, expand=True)
    elif orientation == 8:
      im = im.rotate(90, expand=True)

  if force_rgb:
    im = im.convert(mode='RGB')

  im = np.array(im)
  return im 
開發者ID:vahidk,項目名稱:TensorflowFramework,代碼行數:22,代碼來源:image_utils.py

示例3: test_rotate05

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def test_rotate05(self):
        data = numpy.empty((4,3,3))
        for i in range(3):
            data[:,:,i] = numpy.array([[0,0,0],
                                       [0,1,0],
                                       [0,1,0],
                                       [0,0,0]], dtype=numpy.float64)

        expected = numpy.array([[0,0,0,0],
                            [0,1,1,0],
                            [0,0,0,0]], dtype=numpy.float64)

        for order in range(0, 6):
            out = ndimage.rotate(data, 90)
            for i in range(3):
                assert_array_almost_equal(out[:,:,i], expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:test_ndimage.py

示例4: test_rotate07

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def test_rotate07(self):
        data = numpy.array([[[0, 0, 0, 0, 0],
                             [0, 1, 1, 0, 0],
                             [0, 0, 0, 0, 0]]] * 2,
                           dtype=numpy.float64)
        data = data.transpose()
        expected = numpy.array([[[0, 0, 0],
                                [0, 1, 0],
                                [0, 1, 0],
                                [0, 0, 0],
                                [0, 0, 0]]] * 2, dtype=numpy.float64)
        expected = expected.transpose([2,1,0])

        for order in range(0, 6):
            out = ndimage.rotate(data, 90, axes=(0, 1))
            assert_array_almost_equal(out, expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:test_ndimage.py

示例5: inverse_transform_for_prediction

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def  inverse_transform_for_prediction(self, sample):
        ''' rorate sample['predict'] (5D or 4D) to the original direction.
        assume batch size is 1, otherwise rotate parameter may be different for 
        different elemenets in the batch.

        transform_param_list is a list as saved in __call__().'''
        # get the paramters for invers transformation
        if(isinstance(sample['RandomRotate_Param'], list) or \
            isinstance(sample['RandomRotate_Param'], tuple)):
            transform_param_list = json.loads(sample['RandomRotate_Param'][0]) 
        else:
            transform_param_list = json.loads(sample['RandomRotate_Param']) 
        transform_param_list.reverse()
        for i in range(len(transform_param_list)):
            transform_param_list[i][0] = - transform_param_list[i][0]
        sample['predict'] = self.__apply_transformation(sample['predict'] , 
                                transform_param_list, 1)
        return sample 
開發者ID:HiLab-git,項目名稱:PyMIC,代碼行數:20,代碼來源:transform3d.py

示例6: rotate_coordinates

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def rotate_coordinates(repository, num, x, y, angle, image_type):
	image = readimage(repository, num, image_type)
	if angle != 0:
		image_rotee = snd.rotate(image, -angle)
		(h, w) = image.shape
		(hr, wr) = image_rotee.shape
		angle_rad = angle * (np.pi / 180.)
		c = np.cos(angle_rad)
		s = np.sin(angle_rad)
		x -= (w / 2.)
		y -= (h / 2.)
		xr = ((x * c) - (y * s)) + (wr / 2.)
		yr = ((x * s) + (y * c)) + (hr / 2.)
		return xr.tolist(), yr.tolist(), image_rotee
	else:
		return x.tolist(), y.tolist(), image 
開發者ID:cytomine,項目名稱:Cytomine-python-datamining,代碼行數:18,代碼來源:build_generic_model.py

示例7: test_rotate05

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def test_rotate05(self):
        data = numpy.empty((4, 3, 3))
        for i in range(3):
            data[:, :, i] = numpy.array([[0, 0, 0],
                                         [0, 1, 0],
                                         [0, 1, 0],
                                         [0, 0, 0]], dtype=numpy.float64)

        expected = numpy.array([[0, 0, 0, 0],
                                [0, 1, 1, 0],
                                [0, 0, 0, 0]], dtype=numpy.float64)

        for order in range(0, 6):
            out = ndimage.rotate(data, 90)
            for i in range(3):
                assert_array_almost_equal(out[:, :, i], expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_ndimage.py

示例8: push_heuristic

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def push_heuristic(self, depth_heightmap):

        num_rotations = 16

        for rotate_idx in range(num_rotations):
            rotated_heightmap = ndimage.rotate(depth_heightmap, rotate_idx*(360.0/num_rotations), reshape=False, order=0)
            valid_areas = np.zeros(rotated_heightmap.shape)
            valid_areas[ndimage.interpolation.shift(rotated_heightmap, [0,-25], order=0) - rotated_heightmap > 0.02] = 1
            # valid_areas = np.multiply(valid_areas, rotated_heightmap)
            blur_kernel = np.ones((25,25),np.float32)/9
            valid_areas = cv2.filter2D(valid_areas, -1, blur_kernel)
            tmp_push_predictions = ndimage.rotate(valid_areas, -rotate_idx*(360.0/num_rotations), reshape=False, order=0)
            tmp_push_predictions.shape = (1, rotated_heightmap.shape[0], rotated_heightmap.shape[1])

            if rotate_idx == 0:
                push_predictions = tmp_push_predictions
            else:
                push_predictions = np.concatenate((push_predictions, tmp_push_predictions), axis=0)

        best_pix_ind = np.unravel_index(np.argmax(push_predictions), push_predictions.shape)
        return best_pix_ind 
開發者ID:andyzeng,項目名稱:visual-pushing-grasping,代碼行數:23,代碼來源:trainer.py

示例9: grasp_heuristic

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def grasp_heuristic(self, depth_heightmap):

        num_rotations = 16

        for rotate_idx in range(num_rotations):
            rotated_heightmap = ndimage.rotate(depth_heightmap, rotate_idx*(360.0/num_rotations), reshape=False, order=0)
            valid_areas = np.zeros(rotated_heightmap.shape)
            valid_areas[np.logical_and(rotated_heightmap - ndimage.interpolation.shift(rotated_heightmap, [0,-25], order=0) > 0.02, rotated_heightmap - ndimage.interpolation.shift(rotated_heightmap, [0,25], order=0) > 0.02)] = 1
            # valid_areas = np.multiply(valid_areas, rotated_heightmap)
            blur_kernel = np.ones((25,25),np.float32)/9
            valid_areas = cv2.filter2D(valid_areas, -1, blur_kernel)
            tmp_grasp_predictions = ndimage.rotate(valid_areas, -rotate_idx*(360.0/num_rotations), reshape=False, order=0)
            tmp_grasp_predictions.shape = (1, rotated_heightmap.shape[0], rotated_heightmap.shape[1])

            if rotate_idx == 0:
                grasp_predictions = tmp_grasp_predictions
            else:
                grasp_predictions = np.concatenate((grasp_predictions, tmp_grasp_predictions), axis=0)

        best_pix_ind = np.unravel_index(np.argmax(grasp_predictions), grasp_predictions.shape)
        return best_pix_ind 
開發者ID:andyzeng,項目名稱:visual-pushing-grasping,代碼行數:23,代碼來源:trainer.py

示例10: __call__

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def __call__(self, clip, bbox=[]):
        angle = np.random.choice(self.angles)
        output_clip = []
        clip = self._to_numpy(clip)
        for frame in clip:
            output_clip.append(ndimage.rotate(frame, angle, reshape=False))

        if bbox!=[]:
            bbox = np.array(bbox)
            output_bboxes = np.zeros(bbox.shape)-1
            for bbox_ind in range(bbox.shape[0]):
                if bbox.shape[-1] == 2:
                    output_bboxes[bbox_ind] = self._rotate_coords(bbox[bbox_ind], clip[0].shape, angle)
                else:
                    output_bboxes[bbox_ind] = self._rotate_bbox(bbox[bbox_ind], clip[0].shape, angle)

            return output_clip, output_bboxes 

        return output_clip 
開發者ID:MichiganCOG,項目名稱:ViP,代碼行數:21,代碼來源:preprocessing_transforms.py

示例11: __str__

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def __str__(self):
        return 'Rot90(axes=({}, {})'.format(*self.axes)

# class RandomRotion(Base):
#     def __init__(self, angle=20):# angle :in degress, float, [0,360]
#         assert angle >= 0.0
#         self.axes = (0,1) # 隻對HW方向進行旋轉
#         self.angle = angle #
#         self.buffer = None
#
#     def sample(self, *shape):# shape : [H,W,D]
#         shape = list(shape)
#         self.buffer = round(np.random.uniform(low=-self.angle,high=self.angle),2) # 2個小數點
#         if self.buffer < 0:
#             self.buffer += 180
#         return shape
#
#     def tf(self, img, k=0): # img shape [1,H,W,D,c] while label shape is [1,H,W,D]
#         return ndimage.rotate(img, angle=self.buffer, reshape=False)
#
#     def __str__(self):
#         return 'RandomRotion(axes=({}, {}),Angle:{}'.format(*self.axes,self.buffer) 
開發者ID:China-LiuXiaopeng,項目名稱:BraTS-DMFNet,代碼行數:24,代碼來源:transforms.py

示例12: tf

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def tf(self, img, k=0):
        """ Introduction: The rotation function supports the shape [H,W,D,C] or shape [H,W,D]
        :param img: if x, shape is [1,H,W,D,c]; if label, shape is [1,H,W,D]
        :param k: if x, k=0; if label, k=1
        """
        bsize = img.shape[0]

        for bs in range(bsize):
            if k == 0:
                # [[H,W,D], ...]
                # print(img.shape) # (1, 128, 128, 128, 4)
                channels = [rotate(img[bs,:,:,:,c], self.angle_buffer, axes=self.axes_buffer, reshape=False, order=0, mode='constant', cval=-1) for c in
                            range(img.shape[4])]
                img[bs,...] = np.stack(channels, axis=-1)

            if k == 1:
                img[bs,...] = rotate(img[bs,...], self.angle_buffer, axes=self.axes_buffer, reshape=False, order=0, mode='constant', cval=-1)

        return img 
開發者ID:China-LiuXiaopeng,項目名稱:BraTS-DMFNet,代碼行數:21,代碼來源:transforms.py

示例13: get_diffraction_test_image

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def get_diffraction_test_image(self, dtype=np.float32):
        image_x, image_y = self.image_x, self.image_y
        cx, cy = image_x / 2, image_y / 2
        image = np.zeros((image_y, image_x), dtype=np.float32)
        iterator = zip(self._x_list, self._y_list, self._intensity_list)
        for x, y, i in iterator:
            if self.diff_intensity_reduction is not False:
                dr = np.hypot(x - cx, y - cy)
                i = self._get_diff_intensity_reduction(dr, i)
            image[y, x] = i
        disk = morphology.disk(self.disk_r, dtype=dtype)
        image = convolve2d(image, disk, mode="same")
        if self.rotation != 0:
            image = rotate(image, self.rotation, reshape=False)
        if self.blur != 0:
            image = gaussian_filter(image, self.blur)
        if self._background_lorentz_width is not False:
            image += self._get_background_lorentz()
        if self.intensity_noise is not False:
            noise = np.random.random((image_y, image_x)) * self.intensity_noise
            image += noise
        return image 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:24,代碼來源:make_diffraction_test_data.py

示例14: random_rotate3D

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def random_rotate3D(img_numpy, min_angle, max_angle):
    """
    Returns a random rotated array in the same shape
    :param img_numpy: 3D numpy array
    :param min_angle: in degrees
    :param max_angle: in degrees
    :return: 3D rotated img
    """
    assert img_numpy.ndim == 3, "provide a 3d numpy array"
    assert min_angle < max_angle, "min should be less than max val"
    assert min_angle > -360 or max_angle < 360
    all_axes = [(1, 0), (1, 2), (0, 2)]
    angle = np.random.randint(low=min_angle, high=max_angle + 1)
    axes_random_id = np.random.randint(low=0, high=len(all_axes))
    axes = all_axes[axes_random_id]
    return ndimage.rotate(img_numpy, angle, axes=axes) 
開發者ID:black0017,項目名稱:MedicalZooPytorch,代碼行數:18,代碼來源:random_rotate.py

示例15: load_transform

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import rotate [as 別名]
def load_transform(image_path, angle=0., s=(0,0), size=(20,20)):
    #Load the image
    original = imread(image_path, flatten=True)
    #Rotate the image
    rotated = np.maximum(np.minimum(rotate(original, angle=angle, cval=1.), 1.), 0.)
    #Shift the image
    shifted = shift(rotated, shift=s)
    #Resize the image
    resized = np.asarray(imresize(rotated, size=size), dtype=np.float32) / 255 #Note here we coded manually as np.float32, it should be tf.float32
    #Invert the image
    inverted = 1. - resized
    max_value = np.max(inverted)
    if max_value > 0:
        inverted /= max_value
    return inverted 
開發者ID:hmishra2250,項目名稱:NTM-One-Shot-TF,代碼行數:17,代碼來源:Images.py


注:本文中的scipy.ndimage.rotate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。