當前位置: 首頁>>代碼示例>>Python>>正文


Python morphology.generate_binary_structure方法代碼示例

本文整理匯總了Python中scipy.ndimage.morphology.generate_binary_structure方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.generate_binary_structure方法的具體用法?Python morphology.generate_binary_structure怎麽用?Python morphology.generate_binary_structure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.morphology的用法示例。


在下文中一共展示了morphology.generate_binary_structure方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: simple_mask

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def simple_mask(self, bimg):
        '''
        Make soma binary mask with the original
        binary image and its radius and position
        '''

        # Make a ball like mask with 2 X somaradius
        ballvolume = np.zeros(bimg.shape)
        ballvolume[self.centroid[0], self.centroid[1], self.centroid[2]] = 1
        stt = generate_binary_structure(3, 1)
        for i in range(math.ceil(self.radius * 2.5)):
            ballvolume = binary_dilation(ballvolume, structure=stt)

        # Make the soma mask with the intersection
        # between the ball area and the original binary
        self.mask = np.logical_and(ballvolume, bimg)

    # Shift the centroid according to the cropped region 
開發者ID:RivuletStudio,項目名稱:rivuletpy,代碼行數:20,代碼來源:soma.py

示例2: findpeaks

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def findpeaks(image, thresh):
    """
    Return positions of all peaks in image above threshold thresh
    Based on `"detect_peaks" Stack Overflow discussion <https://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/3689710#3689710>`_
    
    :param image: array of values to search
    :param thresh: threshold for peaks
    :type image: numpy.ndarray
    :type thresh: float
    :returns: index array (equivalent of where output)
    """
    # define an 8-connected neighborhood
    neighborhood = generate_binary_structure(2,2)
    # find local maximum for each pixel
    amax = maximum_filter(image, footprint=neighborhood)
    w = numpy.where((image == amax) & (image >= thresh))
    return w 
開發者ID:spacetelescope,項目名稱:drizzlepac,代碼行數:19,代碼來源:starmatch_hist.py

示例3: process_mask

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def process_mask(mask):
    convex_mask = np.copy(mask)
    for i_layer in range(convex_mask.shape[0]):
        mask1  = np.ascontiguousarray(mask[i_layer])
        if np.sum(mask1)>0:
            mask2 = convex_hull_image(mask1)
            if np.sum(mask2)>1.5*np.sum(mask1):
                mask2 = mask1
        else:
            mask2 = mask1
        convex_mask[i_layer] = mask2
    struct = generate_binary_structure(3,1)  
    dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10) 
    return dilatedMask 
開發者ID:uci-cbcl,項目名稱:DeepLung,代碼行數:16,代碼來源:prepare.py

示例4: decouple_volumes

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def decouple_volumes(v1, v2, mode, se=None, iterations=1):
    """
    
    mode : {inner-from-outer, outer-from-inner, neighbors}
        inner-from-outer: this changes v1 by removing voxels
        outer-from-inner: this changes v2 by adding voxels
        neighbors: this changes v2 by removing voxels
    
    """
    assert mode in ["inner-from-outer","outer-from-inner","neighbors"]
    
    if isinstance(v1, str) and os.path.isfile(v1):
        v1 = nib.load(v1)
    assert isinstance(v1, nib.Nifti1Image) or isinstance(v1, nib.Nifti2Image)
    d1 = v1.get_data()
    if isinstance(v2, str) and os.path.isfile(v2):
        v2 = nib.load(v2)
    assert isinstance(v2, nib.Nifti1Image) or isinstance(v2, nib.Nifti2Image)
    d2 = v2.get_data()
    
    assert d1.ndim is d2.ndim
    
    
    if se is None:
        se = mrph.generate_binary_structure(d1.ndim,1)
    
    if mode == "inner-from-outer":
        # make v2/d2 the inner volume
        d1, d2 = d2, d1
        v1, v2 = v2, v1        
        d2 = d2 & mrph.binary_erosion(d1, se, iterations)
        
    if mode == "outer-from-inner":
        d2 = d2 | mrph.binary_dilation(d1, se, iterations)
        
    if mode == "neighbors":
        d2 = d2 & ~mrph.binary_dilation(d1, se, iterations)
    
    d2 = nib.Nifti1Image(d2, v2.affine, header=v2.header)
    d2.set_filename(v2.get_filename())
    return d2 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:43,代碼來源:hmutils.py

示例5: find_peaks

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def find_peaks(param, img):
    '''
    Given a (grayscale) image, find local maxima whose value is above a given threshold (param['thre1'])
    Args:
        param (dict): 
        img (ndarray): Input image (2d array) where we want to find peaks
    Returns: 
        2d np.array containing the [x,y] coordinates of each peak foun in the image
    '''

    peaks_binary = (maximum_filter(img, footprint=generate_binary_structure(2, 1)) == img) * (img > param['thre1'])
    # Note reverse ([::-1]): we return [[x y], [x y]...] instead of [[y x], [y x]...]
    return np.array(np.nonzero(peaks_binary)[::-1]).T 
開發者ID:Kashu7100,項目名稱:Qualia2.0,代碼行數:15,代碼來源:util.py

示例6: __init__

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def __init__(self, geometric_model='affine', tps_grid_size=3, tps_reg_factor=0, h_matches=15, w_matches=15, use_conv_filter=False, dilation_filter=None, use_cuda=True, normalize_inlier_count=False, offset_factor=227/210):
        super(WeakInlierCount, self).__init__()
        self.normalize=normalize_inlier_count
        self.geometric_model = geometric_model
        self.geometricTnf = GeometricTnf(geometric_model=geometric_model,
                                         tps_grid_size=tps_grid_size,
                                         tps_reg_factor=tps_reg_factor,
                                         out_h=h_matches, out_w=w_matches,
                                         offset_factor = offset_factor,
                                         use_cuda=use_cuda)
        # define dilation filter
        if dilation_filter is None:
            dilation_filter = generate_binary_structure(2, 2)
        # define identity mask tensor (w,h are switched and will be permuted back later)
        mask_id = np.zeros((w_matches,h_matches,w_matches*h_matches))
        idx_list = list(range(0, mask_id.size, mask_id.shape[2]+1))
        mask_id.reshape((-1))[idx_list]=1
        mask_id = mask_id.swapaxes(0,1)
        # perform 2D dilation to each channel 
        if not use_conv_filter:
            if not (isinstance(dilation_filter,int) and dilation_filter==0):
                for i in range(mask_id.shape[2]):
                    mask_id[:,:,i] = binary_dilation(mask_id[:,:,i],structure=dilation_filter).astype(mask_id.dtype)
        else:
            for i in range(mask_id.shape[2]):
                flt=np.array([[1/16,1/8,1/16],
                                 [1/8, 1/4, 1/8],
                                 [1/16,1/8,1/16]])
                mask_id[:,:,i] = scipy.signal.convolve2d(mask_id[:,:,i], flt, mode='same', boundary='fill', fillvalue=0)
            
        # convert to PyTorch variable
        mask_id = Variable(torch.FloatTensor(mask_id).transpose(1,2).transpose(0,1).unsqueeze(0),requires_grad=False)
        self.mask_id = mask_id
        if use_cuda:
            self.mask_id = self.mask_id.cuda(); 
開發者ID:ignacio-rocco,項目名稱:weakalign,代碼行數:37,代碼來源:loss.py

示例7: find_peaks

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def find_peaks(param, img):
    """
    Given a (grayscale) image, find local maxima whose value is above a given
    threshold (param['thre1'])
    :param img: Input image (2d array) where we want to find peaks
    :return: 2d np.array containing the [x,y] coordinates of each peak found
    in the image
    """

    peaks_binary = (maximum_filter(img, footprint=generate_binary_structure(
        2, 1)) == img) * (img > param['thre1'])
    # Note reverse ([::-1]): we return [[x y], [x y]...] instead of [[y x], [y
    # x]...]
    return np.array(np.nonzero(peaks_binary)[::-1]).T 
開發者ID:CUHKSZ-TQL,項目名稱:EverybodyDanceNow_reproduce_pytorch,代碼行數:16,代碼來源:post.py

示例8: local_maxima

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def local_maxima(arr):
    # http://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/3689710#3689710
    """
    Takes an array and detects the troughs using the local maximum filter.
    Returns a boolean mask of the troughs (i.e. 1 when
    the pixel's value is the neighborhood maximum, 0 otherwise)
    """
    # define an connected neighborhood
    # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#generate_binary_structure
    neighborhood = morphology.generate_binary_structure(len(arr.shape),2)
    # apply the local maximum filter; all locations of maximal value 
    # in their neighborhood are set to 1
    # http://www.scipy.org/doc/api_docs/SciPy.ndimage.filters.html#maximum_filter
    local_max = (filters.maximum_filter(arr, footprint=neighborhood)==arr)
    # local_max is a mask that contains the peaks we are 
    # looking for, but also the background.
    # In order to isolate the peaks we must remove the background from the mask.
    # 
    # we create the mask of the background
    background = (arr==arr.min())           # mxu: in the original version, was         background = (arr==0)
    # 
    # a little technicality: we must erode the background in order to 
    # successfully subtract it from local_max, otherwise a line will 
    # appear along the background border (artifact of the local maximum filter)
    # http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#binary_erosion
    eroded_background = morphology.binary_erosion(
        background, structure=neighborhood, border_value=1)
    # 
    # we obtain the final mask, containing only peaks, 
    # by removing the background from the local_max mask
    #detected_maxima = local_max - eroded_backround             # mxu: this is the old version, but the boolean minus operator is deprecated
    detected_maxima = np.bitwise_and(local_max, np.bitwise_not(eroded_background))          # Material nonimplication, see http://en.wikipedia.org/wiki/Material_nonimplication
    return np.where(detected_maxima) 
開發者ID:xulabs,項目名稱:aitom,代碼行數:35,代碼來源:local_extrema.py

示例9: mkoutersurf

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def mkoutersurf(image, radius, outfile):
    #radius information is currently ignored
    #it is a little tougher to deal with the morphology in python

    fill = nib.load( image )
    filld = fill.get_data()
    filld[filld==1] = 255

    gaussian = np.ones((2,2))*.25

    image_f = np.zeros((256,256,256))

    for slice in range(256):
        temp = filld[:,:,slice]
        image_f[:,:,slice] = convolve(temp, gaussian, 'same')

    image2 = np.zeros((256,256,256))
    image2[np.where(image_f <= 25)] = 0
    image2[np.where(image_f > 25)] = 255

    strel15 = generate_binary_structure(3, 1)

    BW2 = grey_closing(image2, structure=strel15)
    thresh = np.max(BW2)/2
    BW2[np.where(BW2 <= thresh)] = 0
    BW2[np.where(BW2 > thresh)] = 255

    v, f, _, _ = measure.marching_cubes_lewiner(BW2, 100)

    v2 = np.transpose(
             np.vstack( ( 128 - v[:,0],
                          v[:,2] - 128,
                          128 - v[:,1], )))
    
    write_surface(outfile, v2, f) 
開發者ID:pelednoam,項目名稱:mmvt,代碼行數:37,代碼來源:mkoutersurf.py

示例10: detect

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import generate_binary_structure [as 別名]
def detect(self, image):
        # define an 8-connected neighborhood
        neighborhood = generate_binary_structure(2, 2)

        # apply the local maximum filter; all pixel of maximal value
        # in their neighborhood are set to 1
        local_max = maximum_filter(image, footprint=neighborhood) == image
        # local_max is a mask that contains the peaks we are
        # looking for, but also the background.
        # In order to isolate the peaks we must remove the background from the mask.

        # we create the mask of the background
        background = (image < self.min_th)

        # a little technicality: we must erode the background in order to
        # successfully subtract it form local_max, otherwise a line will
        # appear along the background border (artifact of the local maximum filter)
        eroded_background = binary_erosion(background, structure=neighborhood, border_value=1)

        # we obtain the final mask, containing only peaks,
        # by removing the background from the local_max mask (xor operation)
        detected_peaks = local_max ^ eroded_background

        detected_peaks[image < self.min_th] = False
        peaks = np.array(np.nonzero(detected_peaks)).T

        if len(peaks) == 0:
            return peaks, np.array([])

        # nms
        if len(peaks) == 1:
            clusters = [0]
        else:
            clusters = fclusterdata(peaks, self.min_dist, criterion="distance")
        peak_groups = {}
        for ind_junc, ind_group in enumerate(clusters):
            if ind_group not in peak_groups.keys():
                peak_groups[ind_group] = []
                peak_groups[ind_group].append(peaks[ind_junc])
        peaks_nms = []
        peaks_score = []
        for peak_group in peak_groups.values():
            values = [image[y, x] for y, x in peak_group]
            ind_max = np.argmax(values)
            peaks_nms.append(peak_group[int(ind_max)])
            peaks_score.append(values[int(ind_max)])

        return np.float32(np.array(peaks_nms)), np.float32(np.array(peaks_score)) 
開發者ID:svip-lab,項目名稱:PPGNet,代碼行數:50,代碼來源:common.py


注:本文中的scipy.ndimage.morphology.generate_binary_structure方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。