本文整理匯總了Python中scipy.ndimage.morphology.distance_transform_edt方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.distance_transform_edt方法的具體用法?Python morphology.distance_transform_edt怎麽用?Python morphology.distance_transform_edt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage.morphology
的用法示例。
在下文中一共展示了morphology.distance_transform_edt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: spectrum_mask
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def spectrum_mask(size):
"""Creates a mask to filter the image of size size"""
import numpy as np
from scipy.ndimage.morphology import distance_transform_edt as distance
ftmask = np.ones(size)
# Set zeros on corners
# ftmask[0, 0] = 0
# ftmask[size[0] - 1, size[1] - 1] = 0
# ftmask[0, size[1] - 1] = 0
# ftmask[size[0] - 1, 0] = 0
ftmask[size[0] // 2, size[1] // 2] = 0
# Distance transform
ftmask = distance(ftmask)
ftmask /= ftmask.max()
# Keep this just in case we want to switch to the opposite filter
ftmask *= -1.0
ftmask += 1.0
ftmask[ftmask >= 0.4] = 1
ftmask[ftmask < 1] = 0
return ftmask
示例2: edt
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def edt(self, target: np.ndarray) -> np.ndarray:
sh = target.shape
if target.min() == 1: # If everything is 1, the EDT should be inf for every pixel
nc = target.ndim if self.vector else 1
return np.full((nc, *sh), np.inf, dtype=np.float32)
if self.vector:
if target.ndim == 2:
coords = np.mgrid[:sh[0], :sh[1]]
elif target.ndim == 3:
coords = np.mgrid[:sh[0], :sh[1], :sh[2]]
else:
raise RuntimeError(f'Target shape {sh} not understood.')
inds = distance_transform_edt(
target, return_distances=False, return_indices=True
).astype(np.float32)
dist = inds - coords
# assert np.isclose(np.sqrt(dist[0] ** 2 + dist[1] ** 2), distance_transform_edt(target))
return dist
# Else: Regular scalar edt
dist = distance_transform_edt(target).astype(np.float32)[None]
return dist
示例3: generate_click
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def generate_click(fn_map, fp_map, click_map, net_size, y_meshgrid, x_meshgrid):
fn_map = np.pad(fn_map, ((1,1),(1,1)), 'constant')
fndist_map = distance_transform_edt(fn_map)
fndist_map = fndist_map[1:-1, 1:-1]
fndist_map = np.multiply(fndist_map, 1-click_map)
fp_map = np.pad(fp_map, ((1,1),(1,1)), 'constant')
fpdist_map = distance_transform_edt(fp_map)
fpdist_map = fpdist_map[1:-1, 1:-1]
fpdist_map = np.multiply(fpdist_map, 1-click_map)
if np.max(fndist_map) > np.max(fpdist_map):
is_pos = 1
return fndist_map, is_pos
else:
is_pos = 0
return fpdist_map, is_pos
示例4: surface_distances
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def surface_distances(y_true, y_pred, voxel_shape=None):
check_bool(y_pred, y_true)
check_shapes(y_pred, y_true)
pred_border = np.logical_xor(y_pred, binary_erosion(y_pred))
true_border = np.logical_xor(y_true, binary_erosion(y_true))
dt = distance_transform_edt(~true_border, sampling=voxel_shape)
return dt[pred_border]
示例5: _make_costgrid
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def _make_costgrid(mask, ext, z):
"""Computes a costgrid following Kienholz et al. (2014) Eq. (2)
Parameters
----------
mask : numpy.array
The glacier mask.
ext : numpy.array
The glacier boundaries' mask.
z : numpy.array
The terrain height.
Returns
-------
numpy.array of the costgrid
"""
dis = np.where(mask, distance_transform_edt(mask), np.NaN)
z = np.where(mask, z, np.NaN)
dmax = np.nanmax(dis)
zmax = np.nanmax(z)
zmin = np.nanmin(z)
cost = ((dmax - dis) / dmax * cfg.PARAMS['f1']) ** cfg.PARAMS['a'] + \
((z - zmin) / (zmax - zmin) * cfg.PARAMS['f2']) ** cfg.PARAMS['b']
# This is new: we make the cost to go over boundaries
# arbitrary high to avoid the lines to jump over adjacent boundaries
cost[np.where(ext)] = np.nanmax(cost[np.where(ext)]) * 50
return np.where(mask, cost, np.Inf)
示例6: distance
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def distance(img):
return distance_transform_edt(img)
示例7: PreProcess
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def PreProcess(img_path):
img = cv2.imread(img_path)
I = img[:,:,2]
I2 = bwdist(I <= 100);
I3 = bwdist(I > 100);
img[:,:,0] = np.clip(I2,0,255);
img[:,:,1] = np.clip(I3,0,255);
return img
示例8: spread_labels
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def spread_labels(labels, maxdist=9999999):
"""Spread the given labels to the background"""
distances, features = morphology.distance_transform_edt(labels == 0,
return_distances=1,
return_indices=1)
indexes = features[0] * labels.shape[1] + features[1]
spread = labels.ravel()[indexes.ravel()].reshape(*labels.shape)
spread *= (distances < maxdist)
return spread
示例9: mask_to_sdf
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def mask_to_sdf(im_mask):
# convert binary mask to signed distance function
Phi0 = dtx(1 - im_mask) - dtx(im_mask) + im_mask - 1 / 2
return Phi0
示例10: update_distances
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def update_distances(dist, mask):
if dist.sum() == 0:
distances = distance_transform_edt(1 - mask)
else:
distances = np.dstack([dist, distance_transform_edt(1 - mask)])
return distances
示例11: create_bad_labels
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def create_bad_labels():
from scipy.ndimage.morphology import distance_transform_edt
thresholds = [100, 150, 175, 180, 190, 200, 220, 250]
l = []
for threshold in thresholds:
x = numpy.ones((480, 854))
dt = distance_transform_edt(x)
z = numpy.zeros((480, 854))
z[:] = 255
negatives = dt > threshold
z[negatives] = 0
l.append(numpy.expand_dims(z, axis=2))
return l
示例12: generate_click
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def generate_click(self, mask, inst):
dt = np.where(mask == inst, 1, 0)
# Set the current click points to 0, so that a reasonable new sample is obtained.
dt[self.pos_row, self.col_pos] = 0
dt[self.neg_row, self.neg_col] = 0
#Set the border pixels of the image to 0, so that the click is centred on the required mask.
dt[[0,dt.shape[0] - 1], : ] = 0
dt[:, [0, dt.shape[1] - 1]] = 0
dt = distance_transform_edt(dt)
row = None
col = None
if np.max(dt) > 0:
# get points that are farthest from the object boundary.
#farthest_pts = np.where(dt > np.max(dt) / 2.0)
farthest_pts = np.where(dt == np.max(dt))
# sample from the list since there could be more that one such points.
row, col = random.sample(list(zip(farthest_pts[0], farthest_pts[1])), 1)[0]
#Calculate distance from the existing clicks, and ignore if it is within d_step distance.
dt_pts = np.ones_like(dt)
dt_pts[self.pos_row, self.col_pos] = 0
dt_pts[self.neg_row, self.neg_col] = 0
dt_pts = distance_transform_edt(dt_pts)
if dt_pts[row, col] < self.d_step:
row = None
col = None
return row, col
示例13: to_distance_im
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def to_distance_im(self):
""" Returns the distance-transformed image as a raw float array.
Returns
-------
:obj:`numpy.ndarray`
HxW float array containing the distance transform of the binary image
"""
return snm.distance_transform_edt(BINARY_IM_MAX_VAL - self.data)
示例14: dilate_xor
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def dilate_xor(im_label, neigh_width=8):
"""Computes a label mask highlighting a ring-like neighborhood of each
object or region in a given label mask
Parameters
----------
im_label : array_like
A labeled mask image wherein intensity of a pixel is the ID of the
object it belongs to. Non-zero values are considered to be foreground
objects.
neigh_width : float, optional
The width of the ring-like neighborhood around each object.
Returns
-------
im_neigh_label : array_like
A labeled mask image highlighting pixels in a ring-like neighborhood of
width upto `neigh_width` around each object in the given label mask.
The intensity of each pixel in the ring-like neighborhood is set
equal to the label of the closest object in the given label mask.
other pixels (including the ones inside objects) are set to zero.
"""
# For each background pixel compute the distance to the nearest object and
# the indices of the nearest object pixel
im_dist, closest_obj_ind = distance_transform_edt(im_label == 0,
return_indices=True)
closest_obj_rind, closest_obj_cind = closest_obj_ind
# Get indices of background pixels within a given distance from an object
neigh_rind, neigh_cind = np.where(
np.logical_and(im_dist > 0, im_dist <= neigh_width)
)
# generate labeled neighborhood mask
im_neigh_label = np.zeros_like(im_label)
im_neigh_label[neigh_rind, neigh_cind] = im_label[
closest_obj_rind[neigh_rind, neigh_cind],
closest_obj_cind[neigh_rind, neigh_cind]]
return im_neigh_label
示例15: _adapt
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import distance_transform_edt [as 別名]
def _adapt(self, video_idx, frame_idx, last_mask, get_posteriors_fn):
eroded_mask = grey_erosion(last_mask, size=(self.erosion_size, self.erosion_size, 1))
dt = distance_transform_edt(numpy.logical_not(eroded_mask))
adaptation_target = numpy.zeros_like(last_mask)
adaptation_target[:] = VOID_LABEL
current_posteriors = get_posteriors_fn()
positives = current_posteriors[:, :, 1] > self.posterior_positive_threshold
if self.use_positives:
adaptation_target[positives] = 1
threshold = self.distance_negative_threshold
negatives = dt > threshold
if self.use_negatives:
adaptation_target[negatives] = 0
do_adaptation = eroded_mask.sum() > 0
if self.debug:
adaptation_target_visualization = adaptation_target.copy()
adaptation_target_visualization[adaptation_target == 1] = 128
if not do_adaptation:
adaptation_target_visualization[:] = VOID_LABEL
from scipy.misc import imsave
folder = self.val_data.video_tag().replace("__", "/")
imsave("forwarded/" + self.model + "/valid/" + folder + "/adaptation_%05d.png" % frame_idx,
numpy.squeeze(adaptation_target_visualization))
self.train_data.set_video_idx(video_idx)
for idx in range(self.n_adaptation_steps):
do_step = True
if idx % self.adaptation_interval == 0:
if do_adaptation:
feed_dict = self.train_data.feed_dict_for_video_frame(frame_idx, with_annotations=True)
feed_dict[self.train_data.get_label_placeholder()] = adaptation_target
loss_scale = self.adaptation_loss_scale
adaption_frame_idx = frame_idx
else:
print("skipping current frame adaptation, since the target seems to be lost", file=log.v4)
do_step = False
else:
# mix in first frame to avoid drift
# (do this even if we think the target is lost, since then this can help to find back the target)
feed_dict = self.train_data.feed_dict_for_video_frame(frame_idx=0, with_annotations=True)
loss_scale = 1.0
adaption_frame_idx = 0
if do_step:
loss, _, n_imgs = self.trainer.train_step(epoch=idx, feed_dict=feed_dict, loss_scale=loss_scale,
learning_rate=self.adaptation_learning_rate)
assert n_imgs == 1
print("adapting on frame", adaption_frame_idx, "of sequence", video_idx + 1, \
self.train_data.video_tag(video_idx), "loss:", loss, file=log.v4)
if do_adaptation:
return negatives
else:
return None