本文整理匯總了Python中scipy.ndimage.morphology.binary_erosion方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.binary_erosion方法的具體用法?Python morphology.binary_erosion怎麽用?Python morphology.binary_erosion使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage.morphology
的用法示例。
在下文中一共展示了morphology.binary_erosion方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: decouple_volumes
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_erosion [as 別名]
def decouple_volumes(v1, v2, mode, se=None, iterations=1):
"""
mode : {inner-from-outer, outer-from-inner, neighbors}
inner-from-outer: this changes v1 by removing voxels
outer-from-inner: this changes v2 by adding voxels
neighbors: this changes v2 by removing voxels
"""
assert mode in ["inner-from-outer","outer-from-inner","neighbors"]
if isinstance(v1, str) and os.path.isfile(v1):
v1 = nib.load(v1)
assert isinstance(v1, nib.Nifti1Image) or isinstance(v1, nib.Nifti2Image)
d1 = v1.get_data()
if isinstance(v2, str) and os.path.isfile(v2):
v2 = nib.load(v2)
assert isinstance(v2, nib.Nifti1Image) or isinstance(v2, nib.Nifti2Image)
d2 = v2.get_data()
assert d1.ndim is d2.ndim
if se is None:
se = mrph.generate_binary_structure(d1.ndim,1)
if mode == "inner-from-outer":
# make v2/d2 the inner volume
d1, d2 = d2, d1
v1, v2 = v2, v1
d2 = d2 & mrph.binary_erosion(d1, se, iterations)
if mode == "outer-from-inner":
d2 = d2 | mrph.binary_dilation(d1, se, iterations)
if mode == "neighbors":
d2 = d2 & ~mrph.binary_dilation(d1, se, iterations)
d2 = nib.Nifti1Image(d2, v2.affine, header=v2.header)
d2.set_filename(v2.get_filename())
return d2
示例2: surface_distances
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_erosion [as 別名]
def surface_distances(y_true, y_pred, voxel_shape=None):
check_bool(y_pred, y_true)
check_shapes(y_pred, y_true)
pred_border = np.logical_xor(y_pred, binary_erosion(y_pred))
true_border = np.logical_xor(y_true, binary_erosion(y_true))
dt = distance_transform_edt(~true_border, sampling=voxel_shape)
return dt[pred_border]
示例3: local_maxima
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_erosion [as 別名]
def local_maxima(arr):
# http://stackoverflow.com/questions/3684484/peak-detection-in-a-2d-array/3689710#3689710
"""
Takes an array and detects the troughs using the local maximum filter.
Returns a boolean mask of the troughs (i.e. 1 when
the pixel's value is the neighborhood maximum, 0 otherwise)
"""
# define an connected neighborhood
# http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#generate_binary_structure
neighborhood = morphology.generate_binary_structure(len(arr.shape),2)
# apply the local maximum filter; all locations of maximal value
# in their neighborhood are set to 1
# http://www.scipy.org/doc/api_docs/SciPy.ndimage.filters.html#maximum_filter
local_max = (filters.maximum_filter(arr, footprint=neighborhood)==arr)
# local_max is a mask that contains the peaks we are
# looking for, but also the background.
# In order to isolate the peaks we must remove the background from the mask.
#
# we create the mask of the background
background = (arr==arr.min()) # mxu: in the original version, was background = (arr==0)
#
# a little technicality: we must erode the background in order to
# successfully subtract it from local_max, otherwise a line will
# appear along the background border (artifact of the local maximum filter)
# http://www.scipy.org/doc/api_docs/SciPy.ndimage.morphology.html#binary_erosion
eroded_background = morphology.binary_erosion(
background, structure=neighborhood, border_value=1)
#
# we obtain the final mask, containing only peaks,
# by removing the background from the local_max mask
#detected_maxima = local_max - eroded_backround # mxu: this is the old version, but the boolean minus operator is deprecated
detected_maxima = np.bitwise_and(local_max, np.bitwise_not(eroded_background)) # Material nonimplication, see http://en.wikipedia.org/wiki/Material_nonimplication
return np.where(detected_maxima)
示例4: calcImaMaskBrd
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_erosion [as 別名]
def calcImaMaskBrd(self):
"""Calculate borders of image mask slice."""
return self.imaSlcMsk - binary_erosion(self.imaSlcMsk)
示例5: find_edges
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_erosion [as 別名]
def find_edges(self, member='total'):
self.find_footprint(member=member)
edges = morphology.binary_erosion(self.footprint).astype(np.int16)
self.edges = self.footprint - edges
示例6: detect
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_erosion [as 別名]
def detect(self, image):
# define an 8-connected neighborhood
neighborhood = generate_binary_structure(2, 2)
# apply the local maximum filter; all pixel of maximal value
# in their neighborhood are set to 1
local_max = maximum_filter(image, footprint=neighborhood) == image
# local_max is a mask that contains the peaks we are
# looking for, but also the background.
# In order to isolate the peaks we must remove the background from the mask.
# we create the mask of the background
background = (image < self.min_th)
# a little technicality: we must erode the background in order to
# successfully subtract it form local_max, otherwise a line will
# appear along the background border (artifact of the local maximum filter)
eroded_background = binary_erosion(background, structure=neighborhood, border_value=1)
# we obtain the final mask, containing only peaks,
# by removing the background from the local_max mask (xor operation)
detected_peaks = local_max ^ eroded_background
detected_peaks[image < self.min_th] = False
peaks = np.array(np.nonzero(detected_peaks)).T
if len(peaks) == 0:
return peaks, np.array([])
# nms
if len(peaks) == 1:
clusters = [0]
else:
clusters = fclusterdata(peaks, self.min_dist, criterion="distance")
peak_groups = {}
for ind_junc, ind_group in enumerate(clusters):
if ind_group not in peak_groups.keys():
peak_groups[ind_group] = []
peak_groups[ind_group].append(peaks[ind_junc])
peaks_nms = []
peaks_score = []
for peak_group in peak_groups.values():
values = [image[y, x] for y, x in peak_group]
ind_max = np.argmax(values)
peaks_nms.append(peak_group[int(ind_max)])
peaks_score.append(values[int(ind_max)])
return np.float32(np.array(peaks_nms)), np.float32(np.array(peaks_score))
示例7: distance_to_surface
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_erosion [as 別名]
def distance_to_surface(structure_mask, target_mask, voxel_pts):
"""For every voxel in structure, find minimum distance to target surface.
The target surface is calculated by removing the binary erosion of the target mask.
Args:
structure_mask: a 3D numpy array of boolean values
target_mask: a 3D numpy array of boolean values
voxel_pts: a 4D numpy array of voxel location points (x,y,z) for each voxel in masks
Returns:
a 3D numpy array of minimum distances to target_mask surface for each True voxel in structure_mask,
numpy.NaN otherwise.
"""
# TODO: make multitreaded
# compute surface voxels
target_shell = np.logical_and(target_mask,np.logical_not(binary_erosion(target_mask,iterations=1)))
surface_pts = voxel_pts[np.where(target_shell)]
# index voxels inside structure but outside target
idx_outside = np.where(np.logical_and(structure_mask,np.logical_not(target_mask)))
# index voxels inside structure and inside target
idx_inside = np.where(np.logical_and(structure_mask,target_mask))
structure_pts_outside = voxel_pts[idx_outside]
structure_pts_inside = voxel_pts[idx_inside]
dists_to_target = np.empty(structure_mask.shape)
dists_to_target[:] = np.NaN
# only compute if there are structure voxels ouside the target
if len(structure_pts_outside.shape) != 0:
dists_to_target[idx_outside] = list(map(lambda pt: _min_dist(pt,surface_pts),structure_pts_outside))
# only compute if there are structure voxels inside the target
if len(structure_pts_inside) != 0:
# pts inside have negative dist
dists_to_target[idx_inside] = list(map(lambda pt: - _min_dist(pt,surface_pts),structure_pts_inside))
return dists_to_target