本文整理匯總了Python中scipy.ndimage.morphology.binary_dilation方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.binary_dilation方法的具體用法?Python morphology.binary_dilation怎麽用?Python morphology.binary_dilation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage.morphology
的用法示例。
在下文中一共展示了morphology.binary_dilation方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: markInvalid
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def markInvalid(seg, iter_num=2, do_2d=True):
# find invalid
# if do erosion(seg==0), then miss the border
if do_2d:
stel=np.array([[1,1,1], [1,1,1]]).astype(bool)
if len(seg.shape)==2:
out = binary_dilation(seg>0, structure=stel, iterations=iter_num)
seg[out==0] = -1
else: # save memory
for z in range(seg.shape[0]):
tmp = seg[z] # by reference
out = binary_dilation(tmp>0, structure=stel, iterations=iter_num)
tmp[out==0] = -1
else:
stel=np.array([[1,1,1], [1,1,1], [1,1,1]]).astype(bool)
out = binary_dilation(seg>0, structure=stel, iterations=iter_num)
seg[out==0] = -1
return seg
示例2: validate_structure_mask
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def validate_structure_mask(structure, mask, pts, margin=4):
dilation_idx = np.where(binary_dilation(mask, iterations=margin))
flat_pts = pts[dilation_idx]
flat_mask = mask[dilation_idx]
vv = VVector(0. ,0. , 0.)
def tester(pt):
vv.x = pt[0]
vv.y = pt[1]
vv.z = pt[2]
return structure.IsPointInsideSegment(vv)
mismatch_count = 0
for i, p in enumerate(flat_pts):
if flat_mask[i] != tester(p):
mismatch_count += 1
error = mismatch_count / len(flat_mask) * 100.0
print("mask error (%):", error)
assert error <= 0.05, "Masking error greater than 0.05 %"
示例3: mask_and_normalize_peaks
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def mask_and_normalize_peaks(peaks, tract_seg_path, bundles, dilation, nr_cpus=-1):
"""
runtime TOM: 2min 40s (~8.5GB)
"""
def _process_bundle(idx, bundle):
bundle_peaks = np.copy(peaks[:, :, :, idx * 3:idx * 3 + 3]) # [x, y, z, 3]
img = nib.load(join(tract_seg_path, bundle + ".nii.gz"))
mask, flip_axis = img_utils.flip_axis_to_match_MNI_space(img.get_data(), img.affine)
mask = binary_dilation(mask, iterations=dilation).astype(np.uint8) # [x, y, z]
bundle_peaks[mask == 0] = 0
bundle_peaks = normalize_peak_to_unit_length(bundle_peaks)
return bundle_peaks
nr_cpus = psutil.cpu_count() if nr_cpus == -1 else nr_cpus
results_peaks = Parallel(n_jobs=nr_cpus)(delayed(_process_bundle)(idx, bundle)
for idx, bundle in enumerate(bundles))
results_peaks = np.array(results_peaks).transpose(1, 2, 3, 0, 4)
s = results_peaks.shape
results_peaks = results_peaks.reshape([s[0], s[1], s[2], s[3] * s[4]])
return results_peaks
示例4: process_mask
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def process_mask(mask):
convex_mask = np.copy(mask)
for i_layer in range(convex_mask.shape[0]):
mask1 = np.ascontiguousarray(mask[i_layer])
if np.sum(mask1)>0:
mask2 = convex_hull_image(mask1)
if np.sum(mask2)>1.5*np.sum(mask1):
mask2 = mask1
else:
mask2 = mask1
convex_mask[i_layer] = mask2
struct = generate_binary_structure(3,1)
dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10)
return dilatedMask
示例5: decouple_volumes
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def decouple_volumes(v1, v2, mode, se=None, iterations=1):
"""
mode : {inner-from-outer, outer-from-inner, neighbors}
inner-from-outer: this changes v1 by removing voxels
outer-from-inner: this changes v2 by adding voxels
neighbors: this changes v2 by removing voxels
"""
assert mode in ["inner-from-outer","outer-from-inner","neighbors"]
if isinstance(v1, str) and os.path.isfile(v1):
v1 = nib.load(v1)
assert isinstance(v1, nib.Nifti1Image) or isinstance(v1, nib.Nifti2Image)
d1 = v1.get_data()
if isinstance(v2, str) and os.path.isfile(v2):
v2 = nib.load(v2)
assert isinstance(v2, nib.Nifti1Image) or isinstance(v2, nib.Nifti2Image)
d2 = v2.get_data()
assert d1.ndim is d2.ndim
if se is None:
se = mrph.generate_binary_structure(d1.ndim,1)
if mode == "inner-from-outer":
# make v2/d2 the inner volume
d1, d2 = d2, d1
v1, v2 = v2, v1
d2 = d2 & mrph.binary_erosion(d1, se, iterations)
if mode == "outer-from-inner":
d2 = d2 | mrph.binary_dilation(d1, se, iterations)
if mode == "neighbors":
d2 = d2 & ~mrph.binary_dilation(d1, se, iterations)
d2 = nib.Nifti1Image(d2, v2.affine, header=v2.header)
d2.set_filename(v2.get_filename())
return d2
示例6: __init__
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def __init__(self, geometric_model='affine', tps_grid_size=3, tps_reg_factor=0, h_matches=15, w_matches=15, use_conv_filter=False, dilation_filter=None, use_cuda=True, normalize_inlier_count=False, offset_factor=227/210):
super(WeakInlierCount, self).__init__()
self.normalize=normalize_inlier_count
self.geometric_model = geometric_model
self.geometricTnf = GeometricTnf(geometric_model=geometric_model,
tps_grid_size=tps_grid_size,
tps_reg_factor=tps_reg_factor,
out_h=h_matches, out_w=w_matches,
offset_factor = offset_factor,
use_cuda=use_cuda)
# define dilation filter
if dilation_filter is None:
dilation_filter = generate_binary_structure(2, 2)
# define identity mask tensor (w,h are switched and will be permuted back later)
mask_id = np.zeros((w_matches,h_matches,w_matches*h_matches))
idx_list = list(range(0, mask_id.size, mask_id.shape[2]+1))
mask_id.reshape((-1))[idx_list]=1
mask_id = mask_id.swapaxes(0,1)
# perform 2D dilation to each channel
if not use_conv_filter:
if not (isinstance(dilation_filter,int) and dilation_filter==0):
for i in range(mask_id.shape[2]):
mask_id[:,:,i] = binary_dilation(mask_id[:,:,i],structure=dilation_filter).astype(mask_id.dtype)
else:
for i in range(mask_id.shape[2]):
flt=np.array([[1/16,1/8,1/16],
[1/8, 1/4, 1/8],
[1/16,1/8,1/16]])
mask_id[:,:,i] = scipy.signal.convolve2d(mask_id[:,:,i], flt, mode='same', boundary='fill', fillvalue=0)
# convert to PyTorch variable
mask_id = Variable(torch.FloatTensor(mask_id).transpose(1,2).transpose(0,1).unsqueeze(0),requires_grad=False)
self.mask_id = mask_id
if use_cuda:
self.mask_id = self.mask_id.cuda();
示例7: convex_hull
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def convex_hull (binary):
swap_sequence = [(0, 1), # 102
(0, 2), # 201
(0, 2)] # 102
output = np.ndarray(binary.shape, dtype=binary.dtype)
for swp1, swp2 in swap_sequence:
N = binary.shape[0]
print 'shape', binary.shape
for i in range(N):
contours = measure.find_contours(binary[i], 0.5)
if len(contours) == 0:
continue
if len(contours) == 1:
contour = contours[0]
else:
contour = np.vstack(contours)
cc = np.zeros_like(contour, dtype=np.int32)
cc[:,0] = contour[:, 1]
cc[:,1] = contour[:, 0]
hull = cv2.convexHull(cc)
contour = hull.reshape((1, -1, 2))
cv2.fillPoly(binary[i], contour, 1)
#binary[i] = skimage.morphology.convex_hull_image(binary[i])
pass
print 'swap', swp1, swp2
nb = np.swapaxes(binary, swp1, swp2)
binary = np.ndarray(nb.shape, dtype=nb.dtype)
binary[:,:] = nb[:,:]
pass
binary = np.swapaxes(binary, 0, 1)
output[:,:] = binary[:,:]
return output;
#binary = binary_dilation(output, iterations=dilate)
#return binary
示例8: __call__
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def __call__(self, sample: tuple) -> tuple:
X, Y, background = sample
mask = np.uint8(np.sum(np.abs(np.int32(X) - background), axis=-1) > self.threshold)
mask = np.expand_dims(mask, axis=-1)
mask = np.stack([binary_dilation(mask_frame, iterations=5) for mask_frame in mask])
X *= mask
Y *= mask
return X, Y
示例9: clean_contour
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def clean_contour(prob, c_input):
# Smaller areas with lower prob are very likely to be false positives
wt_mor = binary_dilation((c_input > 0).astype(np.float32), iterations=10)
labels = measure.label(wt_mor)
w_area = []
for l in range(1, np.amax(labels) + 1):
w_area.append(np.sum(prob[labels == l]))
if len(w_area) > 0:
max_area = np.amax(w_area)
for l in range(len(w_area)):
if w_area[l] < max_area / 2.0:
c_input[labels == l + 1] = 0
return c_input
示例10: _prep
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def _prep(self):
self._nforeground = self._bimg.sum()
# Dilate bimg to make it less strict for the big gap criteria
# It is needed since sometimes the tracing goes along the
# boundary of the thin fibre in the binary img
self._dilated_bimg = binary_dilation(self._bimg)
if not self._silent:
print('(2) --Boundary DT...')
self._make_dt()
if not self._silent:
print('(3) --Fast Marching with %s quality...' % ('high' if self._quality else 'low'))
self._fast_marching()
if not self._silent:
print('(4) --Compute Gradients...')
self._make_grad()
# Make copy of the timemap
self._tt = self._t.copy()
self._tt[self._bimg <= 0] = -2
# Label all voxels of soma with -3
self._tt[self._soma.mask > 0] = -3
# For making a large tube to contain the last traced branch
self._bb = np.zeros(shape=self._tt.shape)
示例11: trim_long_silences
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def trim_long_silences(wav):
"""
Ensures that segments without voice in the waveform remain no longer than a
threshold determined by the VAD parameters in params.py.
:param wav: the raw waveform as a numpy array of floats
:return: the same waveform with silences trimmed away (length <= original wav length)
"""
# Compute the voice detection window size
samples_per_window = (vad_window_length * sampling_rate) // 1000
# Trim the end of the audio to have a multiple of the window size
wav = wav[:len(wav) - (len(wav) % samples_per_window)]
# Convert the float waveform to 16-bit mono PCM
pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
# Perform voice activation detection
voice_flags = []
vad = webrtcvad.Vad(mode=3)
for window_start in range(0, len(wav), samples_per_window):
window_end = window_start + samples_per_window
voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
sample_rate=sampling_rate))
voice_flags = np.array(voice_flags)
# Smooth the voice detection with a moving average
def moving_average(array, width):
array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
ret = np.cumsum(array_padded, dtype=float)
ret[width:] = ret[width:] - ret[:-width]
return ret[width - 1:] / width
audio_mask = moving_average(voice_flags, vad_moving_average_width)
audio_mask = np.round(audio_mask).astype(np.bool)
# Dilate the voiced regions
audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
audio_mask = np.repeat(audio_mask, samples_per_window)
return wav[audio_mask == True]
示例12: simple_brain_mask
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def simple_brain_mask(data):
"""
Simple brain mask (for peak image). Does not matter if has holes
because for cropping anyways only take min and max.
Args:
data: peak image (x, y, z, 9)
Returns:
brain mask (x, y, z)
"""
data_max = data.max(axis=3)
mask = data_max > 0.01
mask = binary_dilation(mask, iterations=1)
return mask.astype(np.uint8)
示例13: dilate_binary_mask
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def dilate_binary_mask(file_in, file_out, dilation=2):
img = nib.load(file_in)
data = img.get_data()
for i in range(dilation):
data = binary_dilation(data)
data = data > 0.5
img_out = nib.Nifti1Image(data.astype(np.uint8), img.affine)
nib.save(img_out, file_out)
示例14: all_slice_analysis
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def all_slice_analysis(bw, spacing, cut_num=0, vol_limit=[0.68, 8.2], area_th=6e3, dist_th=62):
# in some cases, several top layers need to be removed first
if cut_num > 0:
bw0 = np.copy(bw)
bw[-cut_num:] = False
label = measure.label(bw, connectivity=1)
# remove components access to corners
mid = int(label.shape[2] / 2)
bg_label = set([label[0, 0, 0], label[0, 0, -1], label[0, -1, 0], label[0, -1, -1], \
label[-1-cut_num, 0, 0], label[-1-cut_num, 0, -1], label[-1-cut_num, -1, 0], label[-1-cut_num, -1, -1], \
label[0, 0, mid], label[0, -1, mid], label[-1-cut_num, 0, mid], label[-1-cut_num, -1, mid]])
for l in bg_label:
label[label == l] = 0
# select components based on volume
properties = measure.regionprops(label)
for prop in properties:
if prop.area * spacing.prod() < vol_limit[0] * 1e6 or prop.area * spacing.prod() > vol_limit[1] * 1e6:
label[label == prop.label] = 0
# prepare a distance map for further analysis
x_axis = np.linspace(-label.shape[1]/2+0.5, label.shape[1]/2-0.5, label.shape[1]) * spacing[1]
y_axis = np.linspace(-label.shape[2]/2+0.5, label.shape[2]/2-0.5, label.shape[2]) * spacing[2]
x, y = np.meshgrid(x_axis, y_axis)
d = (x**2+y**2)**0.5
vols = measure.regionprops(label)
valid_label = set()
# select components based on their area and distance to center axis on all slices
for vol in vols:
single_vol = label == vol.label
slice_area = np.zeros(label.shape[0])
min_distance = np.zeros(label.shape[0])
for i in range(label.shape[0]):
slice_area[i] = np.sum(single_vol[i]) * np.prod(spacing[1:3])
min_distance[i] = np.min(single_vol[i] * d + (1 - single_vol[i]) * np.max(d))
if np.average([min_distance[i] for i in range(label.shape[0]) if slice_area[i] > area_th]) < dist_th:
valid_label.add(vol.label)
bw = np.in1d(label, list(valid_label)).reshape(label.shape)
# fill back the parts removed earlier
if cut_num > 0:
# bw1 is bw with removed slices, bw2 is a dilated version of bw, part of their intersection is returned as final mask
bw1 = np.copy(bw)
bw1[-cut_num:] = bw0[-cut_num:]
bw2 = np.copy(bw)
bw2 = scipy.ndimage.binary_dilation(bw2, iterations=cut_num)
bw3 = bw1 & bw2
label = measure.label(bw, connectivity=1)
label3 = measure.label(bw3, connectivity=1)
l_list = list(set(np.unique(label)) - {0})
valid_l3 = set()
for l in l_list:
indices = np.nonzero(label==l)
l3 = label3[indices[0][0], indices[1][0], indices[2][0]]
if l3 > 0:
valid_l3.add(l3)
bw = np.in1d(label3, list(valid_l3)).reshape(label3.shape)
return bw, len(valid_label)
示例15: _wm_mask
# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def _wm_mask(self, row, wm_fa_thresh=0.2):
wm_mask_file = self._get_fname(row, '_wm_mask.nii.gz')
if self.force_recompute or not op.exists(wm_mask_file):
dwi_img = nib.load(row['dwi_file'])
dwi_data = dwi_img.get_fdata()
if 'seg_file' in row.index:
# If we found a white matter segmentation in the
# expected location:
seg_img = nib.load(row['seg_file'])
seg_data_orig = seg_img.get_fdata()
# For different sets of labels, extract all the voxels that
# have any of these values:
wm_mask = np.sum(np.concatenate(
[(seg_data_orig == l)[..., None]
for l in self.wm_labels], -1), -1)
# Resample to DWI data:
wm_mask = np.round(reg.resample(wm_mask, dwi_data[..., 0],
seg_img.affine,
dwi_img.affine)).astype(int)
meta = dict(source=row['seg_file'],
wm_labels=self.wm_labels)
else:
# Otherwise, we'll identify the white matter based on FA:
fa_fname = self._dti_fa(row)
dti_fa = nib.load(fa_fname).get_fdata()
wm_mask = dti_fa > wm_fa_thresh
meta = dict(source=fa_fname,
fa_threshold=wm_fa_thresh)
# Dilate to be sure to reach the gray matter:
wm_mask = binary_dilation(wm_mask) > 0
self.log_and_save_nii(nib.Nifti1Image(wm_mask.astype(np.float32),
row['dwi_affine']),
wm_mask_file)
meta_fname = self._get_fname(row, '_wm_mask.json')
afd.write_json(meta_fname, meta)
return wm_mask_file