當前位置: 首頁>>代碼示例>>Python>>正文


Python morphology.binary_dilation方法代碼示例

本文整理匯總了Python中scipy.ndimage.morphology.binary_dilation方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.binary_dilation方法的具體用法?Python morphology.binary_dilation怎麽用?Python morphology.binary_dilation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.morphology的用法示例。


在下文中一共展示了morphology.binary_dilation方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: markInvalid

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def markInvalid(seg, iter_num=2, do_2d=True):
    # find invalid 
    # if do erosion(seg==0), then miss the border
    if do_2d:
        stel=np.array([[1,1,1], [1,1,1]]).astype(bool)
        if len(seg.shape)==2:
            out = binary_dilation(seg>0, structure=stel, iterations=iter_num)
            seg[out==0] = -1
        else: # save memory
            for z in range(seg.shape[0]):
                tmp = seg[z] # by reference
                out = binary_dilation(tmp>0, structure=stel, iterations=iter_num)
                tmp[out==0] = -1
    else:
        stel=np.array([[1,1,1], [1,1,1], [1,1,1]]).astype(bool)
        out = binary_dilation(seg>0, structure=stel, iterations=iter_num)
        seg[out==0] = -1
    return seg 
開發者ID:zudi-lin,項目名稱:pytorch_connectomics,代碼行數:20,代碼來源:data_segmentation.py

示例2: validate_structure_mask

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def validate_structure_mask(structure, mask, pts, margin=4):
    dilation_idx = np.where(binary_dilation(mask, iterations=margin))
    flat_pts = pts[dilation_idx]
    flat_mask = mask[dilation_idx]
    vv = VVector(0. ,0. , 0.)

    def tester(pt):
        vv.x = pt[0]
        vv.y = pt[1]
        vv.z = pt[2]
        return structure.IsPointInsideSegment(vv)

    mismatch_count = 0
    for i, p in enumerate(flat_pts):
        if flat_mask[i] != tester(p):
            mismatch_count += 1

    error = mismatch_count / len(flat_mask) * 100.0
    print("mask error (%):", error)
    assert error <= 0.05, "Masking error greater than 0.05 %" 
開發者ID:VarianAPIs,項目名稱:PyESAPI,代碼行數:22,代碼來源:__init__.py

示例3: mask_and_normalize_peaks

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def mask_and_normalize_peaks(peaks, tract_seg_path, bundles, dilation, nr_cpus=-1):
    """
    runtime TOM: 2min 40s  (~8.5GB)
    """
    def _process_bundle(idx, bundle):
        bundle_peaks = np.copy(peaks[:, :, :, idx * 3:idx * 3 + 3])  # [x, y, z, 3]
        img = nib.load(join(tract_seg_path, bundle + ".nii.gz"))
        mask, flip_axis = img_utils.flip_axis_to_match_MNI_space(img.get_data(), img.affine)
        mask = binary_dilation(mask, iterations=dilation).astype(np.uint8)  # [x, y, z]
        bundle_peaks[mask == 0] = 0
        bundle_peaks = normalize_peak_to_unit_length(bundle_peaks)
        return bundle_peaks

    nr_cpus = psutil.cpu_count() if nr_cpus == -1 else nr_cpus
    results_peaks = Parallel(n_jobs=nr_cpus)(delayed(_process_bundle)(idx, bundle)
                                             for idx, bundle in enumerate(bundles))

    results_peaks = np.array(results_peaks).transpose(1, 2, 3, 0, 4)
    s = results_peaks.shape
    results_peaks = results_peaks.reshape([s[0], s[1], s[2], s[3] * s[4]])
    return results_peaks 
開發者ID:MIC-DKFZ,項目名稱:TractSeg,代碼行數:23,代碼來源:peak_utils.py

示例4: process_mask

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def process_mask(mask):
    convex_mask = np.copy(mask)
    for i_layer in range(convex_mask.shape[0]):
        mask1  = np.ascontiguousarray(mask[i_layer])
        if np.sum(mask1)>0:
            mask2 = convex_hull_image(mask1)
            if np.sum(mask2)>1.5*np.sum(mask1):
                mask2 = mask1
        else:
            mask2 = mask1
        convex_mask[i_layer] = mask2
    struct = generate_binary_structure(3,1)  
    dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10) 
    return dilatedMask 
開發者ID:uci-cbcl,項目名稱:DeepLung,代碼行數:16,代碼來源:prepare.py

示例5: decouple_volumes

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def decouple_volumes(v1, v2, mode, se=None, iterations=1):
    """
    
    mode : {inner-from-outer, outer-from-inner, neighbors}
        inner-from-outer: this changes v1 by removing voxels
        outer-from-inner: this changes v2 by adding voxels
        neighbors: this changes v2 by removing voxels
    
    """
    assert mode in ["inner-from-outer","outer-from-inner","neighbors"]
    
    if isinstance(v1, str) and os.path.isfile(v1):
        v1 = nib.load(v1)
    assert isinstance(v1, nib.Nifti1Image) or isinstance(v1, nib.Nifti2Image)
    d1 = v1.get_data()
    if isinstance(v2, str) and os.path.isfile(v2):
        v2 = nib.load(v2)
    assert isinstance(v2, nib.Nifti1Image) or isinstance(v2, nib.Nifti2Image)
    d2 = v2.get_data()
    
    assert d1.ndim is d2.ndim
    
    
    if se is None:
        se = mrph.generate_binary_structure(d1.ndim,1)
    
    if mode == "inner-from-outer":
        # make v2/d2 the inner volume
        d1, d2 = d2, d1
        v1, v2 = v2, v1        
        d2 = d2 & mrph.binary_erosion(d1, se, iterations)
        
    if mode == "outer-from-inner":
        d2 = d2 | mrph.binary_dilation(d1, se, iterations)
        
    if mode == "neighbors":
        d2 = d2 & ~mrph.binary_dilation(d1, se, iterations)
    
    d2 = nib.Nifti1Image(d2, v2.affine, header=v2.header)
    d2.set_filename(v2.get_filename())
    return d2 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:43,代碼來源:hmutils.py

示例6: __init__

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def __init__(self, geometric_model='affine', tps_grid_size=3, tps_reg_factor=0, h_matches=15, w_matches=15, use_conv_filter=False, dilation_filter=None, use_cuda=True, normalize_inlier_count=False, offset_factor=227/210):
        super(WeakInlierCount, self).__init__()
        self.normalize=normalize_inlier_count
        self.geometric_model = geometric_model
        self.geometricTnf = GeometricTnf(geometric_model=geometric_model,
                                         tps_grid_size=tps_grid_size,
                                         tps_reg_factor=tps_reg_factor,
                                         out_h=h_matches, out_w=w_matches,
                                         offset_factor = offset_factor,
                                         use_cuda=use_cuda)
        # define dilation filter
        if dilation_filter is None:
            dilation_filter = generate_binary_structure(2, 2)
        # define identity mask tensor (w,h are switched and will be permuted back later)
        mask_id = np.zeros((w_matches,h_matches,w_matches*h_matches))
        idx_list = list(range(0, mask_id.size, mask_id.shape[2]+1))
        mask_id.reshape((-1))[idx_list]=1
        mask_id = mask_id.swapaxes(0,1)
        # perform 2D dilation to each channel 
        if not use_conv_filter:
            if not (isinstance(dilation_filter,int) and dilation_filter==0):
                for i in range(mask_id.shape[2]):
                    mask_id[:,:,i] = binary_dilation(mask_id[:,:,i],structure=dilation_filter).astype(mask_id.dtype)
        else:
            for i in range(mask_id.shape[2]):
                flt=np.array([[1/16,1/8,1/16],
                                 [1/8, 1/4, 1/8],
                                 [1/16,1/8,1/16]])
                mask_id[:,:,i] = scipy.signal.convolve2d(mask_id[:,:,i], flt, mode='same', boundary='fill', fillvalue=0)
            
        # convert to PyTorch variable
        mask_id = Variable(torch.FloatTensor(mask_id).transpose(1,2).transpose(0,1).unsqueeze(0),requires_grad=False)
        self.mask_id = mask_id
        if use_cuda:
            self.mask_id = self.mask_id.cuda(); 
開發者ID:ignacio-rocco,項目名稱:weakalign,代碼行數:37,代碼來源:loss.py

示例7: convex_hull

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def convex_hull (binary):
    swap_sequence = [(0, 1),  # 102
                     (0, 2),  # 201
                     (0, 2)]  # 102

    output = np.ndarray(binary.shape, dtype=binary.dtype)
    for swp1, swp2 in swap_sequence:
        N = binary.shape[0]
        print 'shape', binary.shape
        for i in range(N):
            contours = measure.find_contours(binary[i], 0.5)
            if len(contours) == 0:
                continue
            if len(contours) == 1:
                contour = contours[0]
            else:
                contour = np.vstack(contours)
            cc = np.zeros_like(contour, dtype=np.int32)
            cc[:,0] = contour[:, 1]
            cc[:,1] = contour[:, 0]
            hull = cv2.convexHull(cc)
            contour = hull.reshape((1, -1, 2)) 
            cv2.fillPoly(binary[i], contour, 1)
            #binary[i] = skimage.morphology.convex_hull_image(binary[i])
            pass
        print 'swap', swp1, swp2
        nb = np.swapaxes(binary, swp1, swp2)
        binary = np.ndarray(nb.shape, dtype=nb.dtype)
        binary[:,:] = nb[:,:]
        pass
    binary = np.swapaxes(binary, 0, 1)
    output[:,:] = binary[:,:]
    return output;
    #binary = binary_dilation(output, iterations=dilate)
    #return binary 
開發者ID:aaalgo,項目名稱:plumo,代碼行數:37,代碼來源:mesh.py

示例8: __call__

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def __call__(self, sample: tuple) -> tuple:
        X, Y, background = sample

        mask = np.uint8(np.sum(np.abs(np.int32(X) - background), axis=-1) > self.threshold)
        mask = np.expand_dims(mask, axis=-1)

        mask = np.stack([binary_dilation(mask_frame, iterations=5) for mask_frame in mask])

        X *= mask
        Y *= mask

        return X, Y 
開發者ID:aimagelab,項目名稱:novelty-detection,代碼行數:14,代碼來源:transforms.py

示例9: clean_contour

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def clean_contour(prob, c_input):
    # Smaller areas with lower prob are very likely to be false positives
    wt_mor = binary_dilation((c_input > 0).astype(np.float32), iterations=10)
    labels = measure.label(wt_mor)
    w_area = []
    for l in range(1, np.amax(labels) + 1):
        w_area.append(np.sum(prob[labels == l]))
    if len(w_area) > 0:
        max_area = np.amax(w_area)
        for l in range(len(w_area)):
            if w_area[l] < max_area / 2.0:
                c_input[labels == l + 1] = 0
    return c_input 
開發者ID:xf4j,項目名稱:brats17,代碼行數:15,代碼來源:prepare_for_submission.py

示例10: _prep

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def _prep(self):
        self._nforeground = self._bimg.sum()        
        # Dilate bimg to make it less strict for the big gap criteria
        # It is needed since sometimes the tracing goes along the
        # boundary of the thin fibre in the binary img
        self._dilated_bimg = binary_dilation(self._bimg)

        if not self._silent:
            print('(2) --Boundary DT...')
        self._make_dt()
        if not self._silent:
            print('(3) --Fast Marching with %s quality...' % ('high' if self._quality else 'low'))
        self._fast_marching()
        if not self._silent:
            print('(4) --Compute Gradients...')
        self._make_grad()

        # Make copy of the timemap
        self._tt = self._t.copy()
        self._tt[self._bimg <= 0] = -2

        # Label all voxels of soma with -3
        self._tt[self._soma.mask > 0] = -3

        # For making a large tube to contain the last traced branch
        self._bb = np.zeros(shape=self._tt.shape) 
開發者ID:RivuletStudio,項目名稱:rivuletpy,代碼行數:28,代碼來源:trace.py

示例11: trim_long_silences

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def trim_long_silences(wav):
    """
    Ensures that segments without voice in the waveform remain no longer than a 
    threshold determined by the VAD parameters in params.py.

    :param wav: the raw waveform as a numpy array of floats 
    :return: the same waveform with silences trimmed away (length <= original wav length)
    """
    # Compute the voice detection window size
    samples_per_window = (vad_window_length * sampling_rate) // 1000
    
    # Trim the end of the audio to have a multiple of the window size
    wav = wav[:len(wav) - (len(wav) % samples_per_window)]
    
    # Convert the float waveform to 16-bit mono PCM
    pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
    
    # Perform voice activation detection
    voice_flags = []
    vad = webrtcvad.Vad(mode=3)
    for window_start in range(0, len(wav), samples_per_window):
        window_end = window_start + samples_per_window
        voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
                                         sample_rate=sampling_rate))
    voice_flags = np.array(voice_flags)
    
    # Smooth the voice detection with a moving average
    def moving_average(array, width):
        array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
        ret = np.cumsum(array_padded, dtype=float)
        ret[width:] = ret[width:] - ret[:-width]
        return ret[width - 1:] / width
    
    audio_mask = moving_average(voice_flags, vad_moving_average_width)
    audio_mask = np.round(audio_mask).astype(np.bool)
    
    # Dilate the voiced regions
    audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
    audio_mask = np.repeat(audio_mask, samples_per_window)
    
    return wav[audio_mask == True] 
開發者ID:resemble-ai,項目名稱:Resemblyzer,代碼行數:43,代碼來源:audio.py

示例12: simple_brain_mask

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def simple_brain_mask(data):
    """
    Simple brain mask (for peak image). Does not matter if has holes
    because for cropping anyways only take min and max.

    Args:
        data: peak image (x, y, z, 9)

    Returns:
        brain mask (x, y, z)
    """
    data_max = data.max(axis=3)
    mask = data_max > 0.01
    mask = binary_dilation(mask, iterations=1)
    return mask.astype(np.uint8) 
開發者ID:MIC-DKFZ,項目名稱:TractSeg,代碼行數:17,代碼來源:img_utils.py

示例13: dilate_binary_mask

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def dilate_binary_mask(file_in, file_out, dilation=2):
    img = nib.load(file_in)
    data = img.get_data()

    for i in range(dilation):
        data = binary_dilation(data)

    data = data > 0.5

    img_out = nib.Nifti1Image(data.astype(np.uint8), img.affine)
    nib.save(img_out, file_out) 
開發者ID:MIC-DKFZ,項目名稱:TractSeg,代碼行數:13,代碼來源:img_utils.py

示例14: all_slice_analysis

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def all_slice_analysis(bw, spacing, cut_num=0, vol_limit=[0.68, 8.2], area_th=6e3, dist_th=62):
    # in some cases, several top layers need to be removed first
    if cut_num > 0:
        bw0 = np.copy(bw)
        bw[-cut_num:] = False
    label = measure.label(bw, connectivity=1)
    # remove components access to corners
    mid = int(label.shape[2] / 2)
    bg_label = set([label[0, 0, 0], label[0, 0, -1], label[0, -1, 0], label[0, -1, -1], \
                    label[-1-cut_num, 0, 0], label[-1-cut_num, 0, -1], label[-1-cut_num, -1, 0], label[-1-cut_num, -1, -1], \
                    label[0, 0, mid], label[0, -1, mid], label[-1-cut_num, 0, mid], label[-1-cut_num, -1, mid]])
    for l in bg_label:
        label[label == l] = 0
        
    # select components based on volume
    properties = measure.regionprops(label)
    for prop in properties:
        if prop.area * spacing.prod() < vol_limit[0] * 1e6 or prop.area * spacing.prod() > vol_limit[1] * 1e6:
            label[label == prop.label] = 0
            
    # prepare a distance map for further analysis
    x_axis = np.linspace(-label.shape[1]/2+0.5, label.shape[1]/2-0.5, label.shape[1]) * spacing[1]
    y_axis = np.linspace(-label.shape[2]/2+0.5, label.shape[2]/2-0.5, label.shape[2]) * spacing[2]
    x, y = np.meshgrid(x_axis, y_axis)
    d = (x**2+y**2)**0.5
    vols = measure.regionprops(label)
    valid_label = set()
    # select components based on their area and distance to center axis on all slices
    for vol in vols:
        single_vol = label == vol.label
        slice_area = np.zeros(label.shape[0])
        min_distance = np.zeros(label.shape[0])
        for i in range(label.shape[0]):
            slice_area[i] = np.sum(single_vol[i]) * np.prod(spacing[1:3])
            min_distance[i] = np.min(single_vol[i] * d + (1 - single_vol[i]) * np.max(d))
        
        if np.average([min_distance[i] for i in range(label.shape[0]) if slice_area[i] > area_th]) < dist_th:
            valid_label.add(vol.label)
            
    bw = np.in1d(label, list(valid_label)).reshape(label.shape)
    
    # fill back the parts removed earlier
    if cut_num > 0:
        # bw1 is bw with removed slices, bw2 is a dilated version of bw, part of their intersection is returned as final mask
        bw1 = np.copy(bw)
        bw1[-cut_num:] = bw0[-cut_num:]
        bw2 = np.copy(bw)
        bw2 = scipy.ndimage.binary_dilation(bw2, iterations=cut_num)
        bw3 = bw1 & bw2
        label = measure.label(bw, connectivity=1)
        label3 = measure.label(bw3, connectivity=1)
        l_list = list(set(np.unique(label)) - {0})
        valid_l3 = set()
        for l in l_list:
            indices = np.nonzero(label==l)
            l3 = label3[indices[0][0], indices[1][0], indices[2][0]]
            if l3 > 0:
                valid_l3.add(l3)
        bw = np.in1d(label3, list(valid_l3)).reshape(label3.shape)
    
    return bw, len(valid_label) 
開發者ID:uci-cbcl,項目名稱:DeepLung,代碼行數:63,代碼來源:prepare.py

示例15: _wm_mask

# 需要導入模塊: from scipy.ndimage import morphology [as 別名]
# 或者: from scipy.ndimage.morphology import binary_dilation [as 別名]
def _wm_mask(self, row, wm_fa_thresh=0.2):
        wm_mask_file = self._get_fname(row, '_wm_mask.nii.gz')
        if self.force_recompute or not op.exists(wm_mask_file):
            dwi_img = nib.load(row['dwi_file'])
            dwi_data = dwi_img.get_fdata()

            if 'seg_file' in row.index:
                # If we found a white matter segmentation in the
                # expected location:
                seg_img = nib.load(row['seg_file'])
                seg_data_orig = seg_img.get_fdata()
                # For different sets of labels, extract all the voxels that
                # have any of these values:
                wm_mask = np.sum(np.concatenate(
                    [(seg_data_orig == l)[..., None]
                     for l in self.wm_labels], -1), -1)

                # Resample to DWI data:
                wm_mask = np.round(reg.resample(wm_mask, dwi_data[..., 0],
                                                seg_img.affine,
                                                dwi_img.affine)).astype(int)
                meta = dict(source=row['seg_file'],
                            wm_labels=self.wm_labels)
            else:
                # Otherwise, we'll identify the white matter based on FA:
                fa_fname = self._dti_fa(row)
                dti_fa = nib.load(fa_fname).get_fdata()
                wm_mask = dti_fa > wm_fa_thresh
                meta = dict(source=fa_fname,
                            fa_threshold=wm_fa_thresh)

            # Dilate to be sure to reach the gray matter:
            wm_mask = binary_dilation(wm_mask) > 0

            self.log_and_save_nii(nib.Nifti1Image(wm_mask.astype(np.float32),
                                                  row['dwi_affine']),
                                  wm_mask_file)

            meta_fname = self._get_fname(row, '_wm_mask.json')
            afd.write_json(meta_fname, meta)

        return wm_mask_file 
開發者ID:yeatmanlab,項目名稱:pyAFQ,代碼行數:44,代碼來源:api.py


注:本文中的scipy.ndimage.morphology.binary_dilation方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。