當前位置: 首頁>>代碼示例>>Python>>正文


Python measurements.label方法代碼示例

本文整理匯總了Python中scipy.ndimage.measurements.label方法的典型用法代碼示例。如果您正苦於以下問題:Python measurements.label方法的具體用法?Python measurements.label怎麽用?Python measurements.label使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.measurements的用法示例。


在下文中一共展示了measurements.label方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: connected_components_reference_implementation

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def connected_components_reference_implementation(images):
    try:
        from scipy.ndimage import measurements
    except ImportError:
        logging.exception("Skipping test method because scipy could not be loaded")
        return
    image_or_images = np.asarray(images)
    if len(image_or_images.shape) == 2:
        images = image_or_images[None, :, :]
    elif len(image_or_images.shape) == 3:
        images = image_or_images
    components = np.asarray([measurements.label(image)[0] for image in images])
    # Get the count of nonzero ids for each image, and offset each image's nonzero
    # ids using the cumulative sum.
    num_ids_per_image = components.reshape(
        [-1, components.shape[1] * components.shape[2]]
    ).max(axis=-1)
    positive_id_start_per_image = np.cumsum(num_ids_per_image)
    for i in range(components.shape[0]):
        new_id_start = positive_id_start_per_image[i - 1] if i > 0 else 0
        components[i, components[i] > 0] += new_id_start
    if len(image_or_images.shape) == 2:
        return components[0, :, :]
    else:
        return components 
開發者ID:tensorflow,項目名稱:addons,代碼行數:27,代碼來源:connected_components_test.py

示例2: _filter_grouplen

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def _filter_grouplen(arr, minsize=3):
    """Filter out the groups of grid points smaller than minsize

    Parameters
    ----------
    arr : the array to filter (should be False and Trues)
    minsize : the minimum size of the group

    Returns
    -------
    the array, with small groups removed
    """

    # Do it with trues
    r, nr = label(arr)
    nr = [i+1 for i, o in enumerate(find_objects(r)) if (len(r[o]) >= minsize)]
    arr = np.asarray([ri in nr for ri in r])

    # and with Falses
    r, nr = label(~ arr)
    nr = [i+1 for i, o in enumerate(find_objects(r)) if (len(r[o]) >= minsize)]
    arr = ~ np.asarray([ri in nr for ri in r])

    return arr 
開發者ID:OGGM,項目名稱:oggm,代碼行數:26,代碼來源:centerlines.py

示例3: _fix_mirror_padding

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def _fix_mirror_padding(self, ann):
        """
        Deal with duplicated instances due to mirroring in interpolation
        during shape augmentation (scale, rotation etc.)
        """
        current_max_id = np.amax(ann)
        inst_list = list(np.unique(ann))
        inst_list.remove(0) # 0 is background
        for inst_id in inst_list:
            inst_map = np.array(ann == inst_id, np.uint8)
            remapped_ids = measurements.label(inst_map)[0]
            remapped_ids[remapped_ids > 1] += current_max_id
            ann[remapped_ids > 1] = remapped_ids[remapped_ids > 1]
            current_max_id = np.amax(ann)
        return ann
#### 
開發者ID:vqdang,項目名稱:hover_net,代碼行數:18,代碼來源:augs.py

示例4: greedy_decoder

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def greedy_decoder(outputs: np.ndarray) -> List[Tuple[int, int, int, float]]:
    """
    Translates back the network output to a label sequence using greedy/best
    path decoding as described in [0].

    [0] Graves, Alex, et al. "Connectionist temporal classification: labelling
    unsegmented sequence data with recurrent neural networks." Proceedings of
    the 23rd international conference on Machine learning. ACM, 2006.

    Args:
        output (numpy.array): (C, W) shaped softmax output tensor

    Returns:
        A list with tuples (class, start, end, max). max is the maximum value
        of the softmax layer in the region.
    """
    labels = np.argmax(outputs, 0)
    seq_len = outputs.shape[1]
    mask = np.eye(outputs.shape[0], dtype='bool')[labels].T
    classes = []
    for label, group in groupby(zip(np.arange(seq_len), labels, outputs[mask]), key=lambda x: x[1]):
        lgroup = list(group)
        if label != 0:
            classes.append((label, lgroup[0][0], lgroup[-1][0], max(x[2] for x in lgroup)))
    return classes 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:27,代碼來源:ctc_decoder.py

示例5: label

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def label(image: np.array, **kw) -> np.array:
    """
    Redefine the scipy.ndimage.measurements.label function to work with a wider
    range of data types.  The default function is inconsistent about the data
    types it accepts on different platforms.
    """
    try:
        return measurements.label(image, **kw)
    except Exception:
        pass
    types = ["int32", "uint32", "int64", "uint64", "int16", "uint16"]
    for t in types:
        try:
            return measurements.label(np.array(image, dtype=t), **kw)
        except Exception:
            pass
    # let it raise the same exception as before
    return measurements.label(image, **kw) 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:20,代碼來源:morph.py

示例6: propagate_labels

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def propagate_labels(image, labels, conflict=0):
    """Given an image and a set of labels, apply the labels
    to all the regions in the image that overlap a label.
    Assign the value `conflict` to any labels that have a conflict."""
    rlabels, _ = label(image)
    cors = correspondences(rlabels, labels)
    outputs = np.zeros(np.amax(rlabels) + 1, 'i')
    oops = -(1 << 30)
    for o, i in cors.T:
        if outputs[o] != 0:
            outputs[o] = oops
        else:
            outputs[o] = i
    outputs[outputs == oops] = conflict
    outputs[0] = 0
    return outputs[rlabels] 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:18,代碼來源:morph.py

示例7: _remove_blobs

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def _remove_blobs(data):
    """Remove false positive blobs, likely occuring in brain sections."""
    labeled_obj, num_obj = label(data)
    if num_obj > 1:  # If there is more than one connected object
        bigger_obj = (labeled_obj == (np.bincount(labeled_obj.flat)[1:].argmax() + 1))

        data2clean = np.copy(data)

        # remove blobs only above the bigger connected object
        z_max = np.max(np.where(bigger_obj)[2])
        data2clean[:, :, :z_max + 1] = 0

        labeled_obj2clean, num_obj2clean = label(data2clean)
        if num_obj2clean:  # If there is connected object above the biffer connected one
            for obj_id in range(1, num_obj2clean + 1):
                # if the blob has a volume < 10% of the bigger connected object, then remove it
                if np.sum(labeled_obj2clean == obj_id) < 0.1 * np.sum(bigger_obj):
                    logger.warning('Removing small objects above slice #' + str(z_max))
                    data[np.where(labeled_obj2clean == obj_id)] = 0

    return data 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:23,代碼來源:postprocessing.py

示例8: decompose_vol2cube_brain

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def decompose_vol2cube_brain(vol_data, cube_size, n_chn, ita):
    cube_list = []
    fold, ovlap = fit_cube_param(vol_data.shape[0:3], cube_size, ita)
    dim = np.asarray(vol_data.shape[0:3])  # [307, 307, 143]
    # decompose
    for R in range(0, fold[0]):
        r_s = R * cube_size - R * ovlap[0]
        r_e = r_s + cube_size
        if r_e >= dim[0]:  # see if exceed the boundry
            r_s = dim[0] - cube_size
            r_e = r_s + cube_size
        for C in range(0, fold[1]):
            c_s = C * cube_size - C * ovlap[1]
            c_e = c_s + cube_size
            if c_e >= dim[1]:
                c_s = dim[1] - cube_size
                c_e = c_s + cube_size
            for H in range(0, fold[2]):
                h_s = H * cube_size - H * ovlap[2]
                h_e = h_s + cube_size
                if h_e >= dim[2]:
                    h_s = dim[2] - cube_size
                    h_e = h_s + cube_size
                # partition multiple channels
                cube_temp = vol_data[r_s:r_e, c_s:c_e, h_s:h_e, :]
                # By default batch_size = 1
                cube_batch = np.zeros(
                    [1, cube_size, cube_size, cube_size, n_chn]).astype('float32')
                cube_batch[0, :, :, :, :] = copy.deepcopy(cube_temp)
                # save
                cube_list.append(cube_batch)

    return cube_list


# compose list of label cubes into a label volume 
開發者ID:JohnleeHIT,項目名稱:Brats2019,代碼行數:38,代碼來源:utils.py

示例9: get_n_largest_components

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def get_n_largest_components(vol, se, n, return_sizes=False):
    """Get the n largest components from a volume.
    
    PARAMETERS
    ----------
    vol : ndarray
        Image volume. A dimX x dimY x dimZ array containing the image data.
    se : ndarray
        Structuring element to use when detecting components (i.e. setting the
        connectivity which defines a component).
    n : int
        Number of (largest) components to retain.
    return_sizes : bool, optional
        Whether or not to also return the sizes (in voxels) of each component
        that was retained (default = False).
    
    RETURNS
    ----------
    Components : ndarray
        Binary dimX x dimY x dimZ array where entries corresponding to retained
        components are True and the remaining entries are False.
    """    
    vol_lbl = label(vol,se)[0]
    labels,region_size = np.unique(vol_lbl,return_counts=True)
    labels = labels[1:]             # disregard background (label=0)
    region_size = region_size[1:]   #
    labels = labels[ np.argsort(region_size)[::-1]]
    components = np.any(np.array([vol_lbl == i for i in labels[:n]]),
                        axis=0)
                        
    # if no components are found, components will be reduced to false. Replace
    # by array of appropriate size
    if components.sum() == 0:
        components = np.zeros_like(vol, dtype=bool)
        
    if return_sizes:
        return components,region_size[labels[:n]]
    else:
        return components 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:41,代碼來源:hmutils.py

示例10: get_large_components

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def get_large_components(vol, se, threshold):
    """Get the components larger than a given threshold from a volume.
    
    PARAMETERS
    ----------
    vol : ndarray
        Image volume. A dimX x dimY x dimZ array containing the image data.
    se : ndarray
        Structuring element to use when detecting components (i.e. setting the
        connectivity which defines a component).
    threshold : float
        Only components (strictly) larger than this value (# of voxels) are
        retained.
        
    RETURNS
    ----------
    components : ndarray
        Binary dimX x dimY x dimZ array where entries corresponding to retained
        components are True and the remaining entries are False.
    """    
    vol_lbl = label(vol,se)[0]
    labels, region_size = np.unique(vol_lbl,return_counts=True)
    labels = labels[1:] # disregard background (label=0)
    region_size = region_size[1:]
    components = np.any(np.array([vol_lbl == i for i in labels[region_size > threshold]]),
                        axis=0)
                        
    # if no components are found, components will be reduced to false. Replace
    # by array of appropriate size
    if components.sum() == 0:
        components = np.zeros_like(vol, dtype=bool)
        
    return components 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:35,代碼來源:hmutils.py

示例11: relabel_compartments

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def relabel_compartments(mesh, old, new):
    """Relabel elements belonging to compartment 'old' (as defined by tag1 and
    tag2 fields) to compartment 'new' of a .msh file. If 'old' and 'new' are
    lists of indices then they are zipped such that relabelling is from old[0]
    to new[0], from old[1] to new[1] etc.
    
    PARAMETERS
    ----------
    mesh : str or mesh_io msh object
        The mesh whose elements are relabelled.
    old : int or list of ints
        Old label.
    new : int or list of ints
        New label.
        
    RETURNS
    ----------
    mesh : mesh_io msh object
        The modified input object.        
    """
    if type(mesh) == str:    
        mesh = mesh_io.read_msh(mesh)
    
    # ensure iterable
    try:
        next(iter(old))
    except TypeError:
        old = [old]
    try:
        next(iter(new))
    except TypeError:
        new = [new]
    
    # renumber
    for iold, inew in zip(old,new):
        mesh.elm.tag1[mesh.elm.tag1 == iold] = inew
        mesh.elm.tag2[mesh.elm.tag2 == iold] = inew
        
    return mesh 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:41,代碼來源:hmutils.py

示例12: vmesh2nifti

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def vmesh2nifti(mesh, vol, filename):
    """Given a volume mesh and an image file (e.g., .nii file), determine which
    voxels in vol are inside which elements of the mesh and label according to
    the values found in mesh.elm.tag1.
    
    PARAMETERS
    ----------
    mesh : str or mesh_io volume mesh object
        Object describing the volume mesh.
    vol : str or nibabel image object
        Reference volume. The output volume is similar to this with respect to
        image dimensions, voxel size etc. only with voxel values being replaced
        by corresponding values of the labels of the tetrahedra in the mesh.
    filename : str
        Name of the saved volume.
        
    RETURNS
    ----------
    Nothing, saves a nifti file by the name of filename to disk.
    """
    if type(mesh) == str:
        mesh = mesh_io.read_msh(mesh)
    if type(vol) == str:
        vol = nib.load(vol)
        
    img_dims = vol.shape
    
    points = np.array(np.meshgrid(*tuple(map(np.arange,img_dims)),
                                      indexing="ij")).reshape((3,-1)).T

    tetrahedra = mesh.nodes.node_coord[mesh.elm.node_number_list[mesh.elm.elm_type==4]-1]
    tetrahedra_regions = mesh.elm.tag1[mesh.elm.elm_type==4]
    
    tetrahedra = apply_affine(tetrahedra, np.linalg.inv(vol.affine))

    labels = label_points(tetrahedra, points, tetrahedra_regions)
    
    write_nifti(labels.reshape(img_dims), filename, vol, dtype=np.uint8,
                return_volume=False) 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:41,代碼來源:hmutils.py

示例13: tf_categorical_dice

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def tf_categorical_dice(pred, truth, k):
    """ Dice overlap metric for label k """
    A = tf.cast(tf.equal(pred, k), dtype=tf.float32)
    B = tf.cast(tf.equal(truth, k), dtype=tf.float32)
    return 2 * tf.reduce_sum(tf.multiply(A, B)) / (tf.reduce_sum(A) + tf.reduce_sum(B)) 
開發者ID:baiwenjia,項目名稱:ukbb_cardiac,代碼行數:7,代碼來源:image_utils.py

示例14: data_augmenter

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def data_augmenter(image, label, shift, rotate, scale, intensity, flip):
    """
        Online data augmentation
        Perform affine transformation on image and label,
        which are 4D tensor of shape (N, H, W, C) and 3D tensor of shape (N, H, W).
    """
    image2 = np.zeros(image.shape, dtype=np.float32)
    label2 = np.zeros(label.shape, dtype=np.int32)
    for i in range(image.shape[0]):
        # For each image slice, generate random affine transformation parameters
        # using the Gaussian distribution
        shift_val = [np.clip(np.random.normal(), -3, 3) * shift,
                     np.clip(np.random.normal(), -3, 3) * shift]
        rotate_val = np.clip(np.random.normal(), -3, 3) * rotate
        scale_val = 1 + np.clip(np.random.normal(), -3, 3) * scale
        intensity_val = 1 + np.clip(np.random.normal(), -3, 3) * intensity

        # Apply the affine transformation (rotation + scale + shift) to the image
        row, col = image.shape[1:3]
        M = cv2.getRotationMatrix2D((row / 2, col / 2), rotate_val, 1.0 / scale_val)
        M[:, 2] += shift_val
        for c in range(image.shape[3]):
            image2[i, :, :, c] = ndimage.interpolation.affine_transform(image[i, :, :, c],
                                                                        M[:, :2], M[:, 2], order=1)

        # Apply the affine transformation (rotation + scale + shift) to the label map
        label2[i, :, :] = ndimage.interpolation.affine_transform(label[i, :, :],
                                                                 M[:, :2], M[:, 2], order=0)

        # Apply intensity variation
        image2[i] *= intensity_val

        # Apply random horizontal or vertical flipping
        if flip:
            if np.random.uniform() >= 0.5:
                image2[i] = image2[i, ::-1, :, :]
                label2[i] = label2[i, ::-1, :]
            else:
                image2[i] = image2[i, :, ::-1, :]
                label2[i] = label2[i, :, ::-1]
    return image2, label2 
開發者ID:baiwenjia,項目名稱:ukbb_cardiac,代碼行數:43,代碼來源:image_utils.py

示例15: np_categorical_dice

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import label [as 別名]
def np_categorical_dice(pred, truth, k):
    """ Dice overlap metric for label k """
    A = (pred == k).astype(np.float32)
    B = (truth == k).astype(np.float32)
    return 2 * np.sum(A * B) / (np.sum(A) + np.sum(B)) 
開發者ID:baiwenjia,項目名稱:ukbb_cardiac,代碼行數:7,代碼來源:image_utils.py


注:本文中的scipy.ndimage.measurements.label方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。