當前位置: 首頁>>代碼示例>>Python>>正文


Python measurements.find_objects方法代碼示例

本文整理匯總了Python中scipy.ndimage.measurements.find_objects方法的典型用法代碼示例。如果您正苦於以下問題:Python measurements.find_objects方法的具體用法?Python measurements.find_objects怎麽用?Python measurements.find_objects使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.measurements的用法示例。


在下文中一共展示了measurements.find_objects方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _filter_grouplen

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def _filter_grouplen(arr, minsize=3):
    """Filter out the groups of grid points smaller than minsize

    Parameters
    ----------
    arr : the array to filter (should be False and Trues)
    minsize : the minimum size of the group

    Returns
    -------
    the array, with small groups removed
    """

    # Do it with trues
    r, nr = label(arr)
    nr = [i+1 for i, o in enumerate(find_objects(r)) if (len(r[o]) >= minsize)]
    arr = np.asarray([ri in nr for ri in r])

    # and with Falses
    r, nr = label(~ arr)
    nr = [i+1 for i, o in enumerate(find_objects(r)) if (len(r[o]) >= minsize)]
    arr = ~ np.asarray([ri in nr for ri in r])

    return arr 
開發者ID:OGGM,項目名稱:oggm,代碼行數:26,代碼來源:centerlines.py

示例2: find_objects

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def find_objects(image: np.array, **kw) -> np.array:
    """
    Redefine the scipy.ndimage.measurements.find_objects function to work with
    a wider range of data types.  The default function is inconsistent about
    the data types it accepts on different platforms.
    """
    try:
        return measurements.find_objects(image, **kw)
    except Exception:
        pass
    types = ["int32", "uint32", "int64", "uint64", "int16", "uint16"]
    for t in types:
        try:
            return measurements.find_objects(np.array(image, dtype=t), **kw)
        except Exception:
            pass
    # let it raise the same exception as before
    return measurements.find_objects(image, **kw) 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:20,代碼來源:morph.py

示例3: findVerticalAlternative

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def findVerticalAlternative(self):
        # This is an alternative method, a bit more expensive
        # than the first version, and is called on failure of
        # the previous findVertical. It uses Scipy labelling to segment the a strip 
        # of data from the ROI
        self.found = False
        cx = self.ROIwh[0]//2
        expectedW, expectedH = self.expectedSize

        win = (expectedW - (expectedW*self.sizeMargin) )//2 
        #take a vertical section of pixels from the ROI and threshold it
        vROI = self.ROIimg[:,cx-win:cx+win]

        #Make a single pixel wide strip, with the median of all the rows 
        vROI = np.median(vROI,axis=1)
        threshVal = int(vROI.max() * self.thresholdVal)
        vROIthres = vROI >= threshVal
        candidate = None
        if vROIthres.min() != vROIthres.max(): 
            # Prevent a divide by zero because roi is all the same value. 
            # e.g. we have a frame completely white or black
            lbl,numLbl = nd.label(vROIthres)
            obj = nd.find_objects(lbl)
            brightest = 0
            for s in obj:
                print s
                # s is an np.slice object
                sBright = np.mean(vROI[s]) 
                sHeight = s[0].stop - s[0].start
                if (self.heightRange[0] <= sHeight <= self.heightRange[1]) and sBright > brightest:
                    candidate = s[0]
                    brightest = sBright
        if candidate:
            self.setPerfPosition( self.ROIcentrexy[0], self.ROIxy[1]+candidate.start + ((candidate.stop-candidate.start)/2 )) 
            self.found = True 
開發者ID:Alexamder,項目名稱:rpitelecine,代碼行數:37,代碼來源:perforation.py

示例4: _filter_small_slopes

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def _filter_small_slopes(hgt, dx, min_slope=0):
    """Masks out slopes with NaN until the slope if all valid points is at
    least min_slope (in degrees).
    """

    min_slope = np.deg2rad(min_slope)
    slope = np.arctan(-np.gradient(hgt, dx))  # beware the minus sign
    # slope at the end always OK
    slope[-1] = min_slope

    # Find the locs where it doesn't work and expand till we got everything
    slope_mask = np.where(slope >= min_slope, slope, np.NaN)
    r, nr = label(~np.isfinite(slope_mask))
    for objs in find_objects(r):
        obj = objs[0]
        i = 0
        while True:
            i += 1
            i0 = objs[0].start-i
            if i0 < 0:
                break
            ngap = obj.stop - i0 - 1
            nhgt = hgt[[i0, obj.stop]]
            current_slope = np.arctan(-np.gradient(nhgt, ngap * dx))
            if i0 <= 0 or current_slope[0] >= min_slope:
                break
        slope_mask[i0:obj.stop] = np.NaN
    out = hgt.copy()
    out[~np.isfinite(slope_mask)] = np.NaN
    return out 
開發者ID:OGGM,項目名稱:oggm,代碼行數:32,代碼來源:centerlines.py

示例5: select_regions

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def select_regions(binary, f, min=0, nbest=100000):
    """Given a scoring function f over slice tuples (as returned by
    find_objects), keeps at most nbest regions whose scores is higher
    than min."""
    labels, n = label(binary)
    objects = find_objects(labels)
    scores = [f(o) for o in objects]
    best = np.argsort(scores)
    keep = np.zeros(len(objects) + 1, 'i')
    if nbest > 0:
        for i in best[-nbest:]:
            if scores[i] <= min:
                continue
            keep[i+1] = 1
    return keep[labels] 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:17,代碼來源:morph.py

示例6: condense

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def condense(im_label):
    """
    Shifts labels in a label image to fill in gaps corresponding to missing
    values.

    Parameters
    ----------
    im_label : array_like
        A label image generated by segmentation methods.

    Returns
    -------
    Condensed : array_like
        A label image where all values > 0 are shifted down to fill gaps.

    See Also
    --------
    histomicstk.segmentation.label.shuffle

    """

    # initialize output
    Condensed = im_label.copy()

    # get extent of each object
    Locations = ms.find_objects(Condensed)

    # initialize counter
    Counter = 1

    # fill in new values
    for i in np.arange(1, len(Locations)+1):
        if Locations[i-1] is not None:
            Patch = Condensed[Locations[i-1]]
            Patch[Patch == i] = Counter
            Counter += 1

    return Condensed 
開發者ID:DigitalSlideArchive,項目名稱:HistomicsTK,代碼行數:40,代碼來源:condense.py

示例7: __distinct_binary_object_correspondences

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def __distinct_binary_object_correspondences(reference, result, connectivity=1):
    """
    Determines all distinct (where connectivity is defined by the connectivity parameter
    passed to scipy's `generate_binary_structure`) binary objects in both of the input
    parameters and returns a 1to1 mapping from the labelled objects in reference to the
    corresponding (whereas a one-voxel overlap suffices for correspondence) objects in
    result.
    
    All stems from the problem, that the relationship is non-surjective many-to-many.
    
    @return (labelmap1, labelmap2, n_lables1, n_labels2, labelmapping2to1)
    """
    result = numpy.atleast_1d(result.astype(numpy.bool))
    reference = numpy.atleast_1d(reference.astype(numpy.bool))
    
    # binary structure
    footprint = generate_binary_structure(result.ndim, connectivity)
    
    # label distinct binary objects
    labelmap1, n_obj_result = label(result, footprint)
    labelmap2, n_obj_reference = label(reference, footprint)
    
    # find all overlaps from labelmap2 to labelmap1; collect one-to-one relationships and store all one-two-many for later processing
    slicers = find_objects(labelmap2) # get windows of labelled objects
    mapping = dict() # mappings from labels in labelmap2 to corresponding object labels in labelmap1
    used_labels = set() # set to collect all already used labels from labelmap2
    one_to_many = list() # list to collect all one-to-many mappings
    for l1id, slicer in enumerate(slicers): # iterate over object in labelmap2 and their windows
        l1id += 1 # labelled objects have ids sarting from 1
        bobj = (l1id) == labelmap2[slicer] # find binary object corresponding to the label1 id in the segmentation
        l2ids = numpy.unique(labelmap1[slicer][bobj]) # extract all unique object identifiers at the corresponding positions in the reference (i.e. the mapping)
        l2ids = l2ids[0 != l2ids] # remove background identifiers (=0)
        if 1 == len(l2ids): # one-to-one mapping: if target label not already used, add to final list of object-to-object mappings and mark target label as used
            l2id = l2ids[0]
            if not l2id in used_labels:
                mapping[l1id] = l2id
                used_labels.add(l2id)
        elif 1 < len(l2ids): # one-to-many mapping: store relationship for later processing
            one_to_many.append((l1id, set(l2ids)))
            
    # process one-to-many mappings, always choosing the one with the least labelmap2 correspondences first
    while True:
        one_to_many = [(l1id, l2ids - used_labels) for l1id, l2ids in one_to_many] # remove already used ids from all sets
        one_to_many = [x for x in one_to_many if x[1]] # remove empty sets
        one_to_many = sorted(one_to_many, key=lambda x: len(x[1])) # sort by set length
        if 0 == len(one_to_many):
            break
        l2id = one_to_many[0][1].pop() # select an arbitrary target label id from the shortest set
        mapping[one_to_many[0][0]] = l2id # add to one-to-one mappings 
        used_labels.add(l2id) # mark target label as used
        one_to_many = one_to_many[1:] # delete the processed set from all sets
    
    return labelmap1, labelmap2, n_obj_result, n_obj_reference, mapping 
開發者ID:doublechenching,項目名稱:brats_segmentation-pytorch,代碼行數:55,代碼來源:binary.py

示例8: delete

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def delete(im_label, indices):
    """
    Deletes objects with values in 'indices' from label image, writing them over
    with zeros to assimilate with background.

    Parameters
    ----------
    im_label : array_like
        A label image generated by segmentation methods.
    indices : array_like
        An n-length array of strictly positive integer values to delete from
        'im_label'.

    Returns
    -------
    Deleted : array_like
        A label image where all values in 'indices' are set to zero.

    Notes:
    ------
    A call to CondenseLabel can squeeze label image values to fill in gaps from
    deleted values.

    See Also
    --------
    histomicstk.segmentation.label.condense

    """

    # initialize output
    Deleted = im_label.copy()

    # get extent of each object
    Locations = ms.find_objects(Deleted)

    # fill in new values
    for i in np.arange(indices.size):
        if Locations[indices[i]-1] is not None:
            Patch = Deleted[Locations[indices[i] - 1]]
            Patch[Patch == indices[i]] = 0

    return Deleted 
開發者ID:DigitalSlideArchive,項目名稱:HistomicsTK,代碼行數:44,代碼來源:delete.py

示例9: area_open

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def area_open(im_label, min_area):
    """Removes small objects from label image.

    Parameters
    ----------
    im_label : array_like
        A uint32 type label image generated by segmentation methods.
    min_area : int
        minimum area threshold for objects. Objects with fewer than 'min_area'
        pixels will be zeroed to merge with background.

    Returns
    -------
    im_open : array_like
        A uint32 label where objects with pixels < min_area are removed.

    Notes
    -----
    Objects are assumed to have positive nonzero values. im_label image will be
    condensed during processing.

    See Also
    --------
    histomicstk.segmentation.label.condense,
    histomicstk.segmentation.label.shuffle,
    histomicstk.segmentation.label.split,
    histomicstk.segmentation.label.width_open

    """

    # copy input image
    im_open = im_label.copy()

    # condense label image
    if np.unique(im_open).size-1 != im_open.max():
        im_open = condense(im_open)

    # count pixels in each object
    Counts, Edges = np.histogram(im_open, bins=im_open.max()+1)

    # get locations of objects in initial image
    Locations = ms.find_objects(im_open)

    # iterate through objects, zeroing where needed
    for i in np.arange(1, Counts.size):
        if Counts[i] < min_area:

            # extract object from label image
            Template = im_open[Locations[i-1]]

            # label mask of object 'i'
            Template[Template == i] = 0

    # condense to fill gaps
    im_open = condense(im_open)

    return im_open 
開發者ID:DigitalSlideArchive,項目名稱:HistomicsTK,代碼行數:59,代碼來源:area_open.py

示例10: __distinct_binary_object_correspondences

# 需要導入模塊: from scipy.ndimage import measurements [as 別名]
# 或者: from scipy.ndimage.measurements import find_objects [as 別名]
def __distinct_binary_object_correspondences(reference, result, connectivity=1):
    """
    Determines all distinct (where connectivity is defined by the connectivity parameter
    passed to scipy's `generate_binary_structure`) binary objects in both of the input
    parameters and returns a 1to1 mapping from the labelled objects in reference to the
    corresponding (whereas a one-voxel overlap suffices for correspondence) objects in
    result.

    All stems from the problem, that the relationship is non-surjective many-to-many.

    @return (labelmap1, labelmap2, n_lables1, n_labels2, labelmapping2to1)
    """
    result = np.atleast_1d(result.astype(np.bool))
    reference = np.atleast_1d(reference.astype(np.bool))

    # binary structure
    footprint = generate_binary_structure(result.ndim, connectivity)

    # label distinct binary objects
    labelmap1, n_obj_result = label(result, footprint)
    labelmap2, n_obj_reference = label(reference, footprint)

    # find all overlaps from labelmap2 to labelmap1; collect one-to-one relationships and store all one-two-many for later processing
    slicers = find_objects(labelmap2)  # get windows of labelled objects
    mapping = dict()  # mappings from labels in labelmap2 to corresponding object labels in labelmap1
    used_labels = set()  # set to collect all already used labels from labelmap2
    one_to_many = list()  # list to collect all one-to-many mappings
    for l1id, slicer in enumerate(slicers):  # iterate over object in labelmap2 and their windows
        l1id += 1  # labelled objects have ids sarting from 1
        bobj = (l1id) == labelmap2[slicer]  # find binary object corresponding to the label1 id in the segmentation
        l2ids = np.unique(labelmap1[slicer][
                                 bobj])  # extract all unique object identifiers at the corresponding positions in the reference (i.e. the mapping)
        l2ids = l2ids[0 != l2ids]  # remove background identifiers (=0)
        if 1 == len(
                l2ids):  # one-to-one mapping: if target label not already used, add to final list of object-to-object mappings and mark target label as used
            l2id = l2ids[0]
            if not l2id in used_labels:
                mapping[l1id] = l2id
                used_labels.add(l2id)
        elif 1 < len(l2ids):  # one-to-many mapping: store relationship for later processing
            one_to_many.append((l1id, set(l2ids)))

    # process one-to-many mappings, always choosing the one with the least labelmap2 correspondences first
    while True:
        one_to_many = [(l1id, l2ids - used_labels) for l1id, l2ids in
                       one_to_many]  # remove already used ids from all sets
        one_to_many = [x for x in one_to_many if x[1]]  # remove empty sets
        one_to_many = sorted(one_to_many, key=lambda x: len(x[1]))  # sort by set length
        if 0 == len(one_to_many):
            break
        l2id = one_to_many[0][1].pop()  # select an arbitrary target label id from the shortest set
        mapping[one_to_many[0][0]] = l2id  # add to one-to-one mappings
        used_labels.add(l2id)  # mark target label as used
        one_to_many = one_to_many[1:]  # delete the processed set from all sets

    return labelmap1, labelmap2, n_obj_result, n_obj_reference, mapping 
開發者ID:lalonderodney,項目名稱:SegCaps,代碼行數:58,代碼來源:metrics.py


注:本文中的scipy.ndimage.measurements.find_objects方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。