本文整理匯總了Python中scipy.ndimage.maximum_filter方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.maximum_filter方法的具體用法?Python ndimage.maximum_filter怎麽用?Python ndimage.maximum_filter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage
的用法示例。
在下文中一共展示了ndimage.maximum_filter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_valid_origins
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_valid_origins():
"""Regression test for #1311."""
func = lambda x: np.mean(x)
data = np.array([1,2,3,4,5], dtype=np.float64)
assert_raises(ValueError, sndi.generic_filter, data, func, size=3,
origin=2)
func2 = lambda x, y: np.mean(x + y)
assert_raises(ValueError, sndi.generic_filter1d, data, func,
filter_size=3, origin=2)
assert_raises(ValueError, sndi.percentile_filter, data, 0.2, size=3,
origin=2)
for filter in [sndi.uniform_filter, sndi.minimum_filter,
sndi.maximum_filter, sndi.maximum_filter1d,
sndi.median_filter, sndi.minimum_filter1d]:
# This should work, since for size == 3, the valid range for origin is
# -1 to 1.
list(filter(data, 3, origin=-1))
list(filter(data, 3, origin=1))
# Just check this raises an error instead of silently accepting or
# segfaulting.
assert_raises(ValueError, filter, data, 3, origin=2)
示例2: filter
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def filter(self, signal):
"""Filter a given signal with a choice of filter type (self.lres_filter).
"""
signal = signal.copy()
filter_size = [1, self.downsamp_t*2-1, self.downsamp_xz*2-1, self.downsamp_xz*2-1]
if self.lres_filter == 'none' or (not self.lres_filter):
output = signal
elif self.lres_filter == 'gaussian':
sigma = [0, int(self.downsamp_t/2), int(self.downsamp_xz/2), int(self.downsamp_xz/2)]
output = ndimage.gaussian_filter(signal, sigma=sigma)
elif self.lres_filter == 'uniform':
output = ndimage.uniform_filter(signal, size=filter_size)
elif self.lres_filter == 'median':
output = ndimage.median_filter(signal, size=filter_size)
elif self.lres_filter == 'maximum':
output = ndimage.maximum_filter(signal, size=filter_size)
else:
raise NotImplementedError(
"lres_filter must be one of none/gaussian/uniform/median/maximum")
return output
示例3: build_part_with_score_fast
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def build_part_with_score_fast(score_threshold, local_max_radius, scores):
parts = []
num_keypoints = scores.shape[2]
lmd = 2 * local_max_radius + 1
# NOTE it seems faster to iterate over the keypoints and perform maximum_filter
# on each subarray vs doing the op on the full score array with size=(lmd, lmd, 1)
for keypoint_id in range(num_keypoints):
kp_scores = scores[:, :, keypoint_id].copy()
kp_scores[kp_scores < score_threshold] = 0.
max_vals = ndi.maximum_filter(kp_scores, size=lmd, mode='constant')
max_loc = np.logical_and(kp_scores == max_vals, kp_scores > 0)
max_loc_idx = max_loc.nonzero()
for y, x in zip(*max_loc_idx):
parts.append((
scores[y, x, keypoint_id],
keypoint_id,
np.array((y, x))
))
return parts
示例4: local_nonmax_suppression
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def local_nonmax_suppression(filtered, suppression_masks, num_orients=16):
"""
Apply oriented non-max suppression to the filters, so that only a single
orientated edge is active at a pixel. See Preproc for additional parameters.
Parameters
----------
filtered : numpy.ndarray
Output of filtering the input image with the filter bank.
Shape is (num feats, rows, columns).
Returns
-------
localized : numpy.ndarray
Result of oriented non-max suppression.
"""
localized = np.zeros_like(filtered)
cross_orient_max = filtered.max(0)
filtered[filtered < 0] = 0
for i, (layer, suppress_mask) in enumerate(zip(filtered, suppression_masks)):
competitor_maxs = maximum_filter(layer, footprint=suppress_mask, mode='nearest')
localized[i] = competitor_maxs <= layer
localized[cross_orient_max > filtered] = 0
return localized
示例5: test_maximum_filter01
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter01(self):
array = numpy.array([1, 2, 3, 4, 5])
filter_shape = numpy.array([2])
output = ndimage.maximum_filter(array, filter_shape)
assert_array_almost_equal([1, 2, 3, 4, 5], output)
示例6: non_max_suppression
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def non_max_suppression(plain, window_size=3, threshold=NMS_Threshold):
under_threshold_indices = plain < threshold
plain[under_threshold_indices] = 0
return plain * (plain == maximum_filter(plain, footprint=np.ones((window_size, window_size))))
示例7: test_maximum_filter02
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter02(self):
array = numpy.array([1, 2, 3, 4, 5])
filter_shape = numpy.array([3])
output = ndimage.maximum_filter(array, filter_shape)
assert_array_almost_equal([2, 3, 4, 5, 5], output)
示例8: test_maximum_filter03
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter03(self):
array = numpy.array([3, 2, 5, 1, 4])
filter_shape = numpy.array([2])
output = ndimage.maximum_filter(array, filter_shape)
assert_array_almost_equal([3, 3, 5, 5, 4], output)
示例9: test_maximum_filter04
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter04(self):
array = numpy.array([3, 2, 5, 1, 4])
filter_shape = numpy.array([3])
output = ndimage.maximum_filter(array, filter_shape)
assert_array_almost_equal([3, 5, 5, 5, 4], output)
示例10: test_maximum_filter05
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter05(self):
array = numpy.array([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
filter_shape = numpy.array([2, 3])
output = ndimage.maximum_filter(array, filter_shape)
assert_array_almost_equal([[3, 5, 5, 5, 4],
[7, 9, 9, 9, 5],
[8, 9, 9, 9, 7]], output)
示例11: test_maximum_filter07
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter07(self):
array = numpy.array([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = [[1, 0, 1], [1, 1, 0]]
output = ndimage.maximum_filter(array,
footprint=footprint)
assert_array_almost_equal([[3, 5, 5, 5, 4],
[7, 7, 9, 9, 5],
[7, 9, 8, 9, 7]], output)
示例12: test_maximum_filter08
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter08(self):
array = numpy.array([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = [[1, 0, 1], [1, 1, 0]]
output = ndimage.maximum_filter(array,
footprint=footprint, origin=-1)
assert_array_almost_equal([[7, 9, 9, 5, 5],
[9, 8, 9, 7, 5],
[8, 8, 7, 7, 7]], output)
示例13: test_maximum_filter09
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter09(self):
array = numpy.array([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = [[1, 0, 1], [1, 1, 0]]
output = ndimage.maximum_filter(array,
footprint=footprint, origin=[-1, 0])
assert_array_almost_equal([[7, 7, 9, 9, 5],
[7, 9, 8, 9, 7],
[8, 8, 8, 7, 7]], output)
示例14: get_invalid_mask
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def get_invalid_mask(img, n, landmask_border):
"""
Create mask of invalid pixels (land, cosatal, inf)
Parameters
----------
img : float ndarray
input image
n : Nansat
input Nansat object
landmask_border : int
border around landmask
Returns
-------
mask : 2D bool ndarray
True where pixels are invalid
"""
mask = np.isnan(img) + np.isinf(img)
n.resize(1./landmask_border)
try:
wm = n.watermask()[1]
except:
print('Cannot add landmask')
else:
wm[wm > 2] = 2
wmf = maximum_filter(wm, 3)
wmz = zoom(wmf, (np.array(img.shape) / np.array(wm.shape)))
mask[wmz == 2] = True
n.undo()
return mask
示例15: test_maximum_filter05
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import maximum_filter [as 別名]
def test_maximum_filter05(self):
array = numpy.array([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
filter_shape = numpy.array([2, 3])
output = ndimage.maximum_filter(array, filter_shape)
assert_array_almost_equal([[3, 5, 5, 5, 4],
[7, 9, 9, 9, 5],
[8, 9, 9, 9, 7]], output)