本文整理匯總了Python中scipy.ndimage.map_coordinates方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.map_coordinates方法的具體用法?Python ndimage.map_coordinates怎麽用?Python ndimage.map_coordinates使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage
的用法示例。
在下文中一共展示了ndimage.map_coordinates方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: query
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def query(self, coords, order=1):
"""
Returns the map value at the specified location(s) on the sky.
Args:
coords (`astropy.coordinates.SkyCoord`): The coordinates to query.
order (Optional[int]): Interpolation order to use. Defaults to `1`,
for linear interpolation.
Returns:
A float array containing the map value at every input coordinate.
The shape of the output will be the same as the shape of the
coordinates stored by `coords`.
"""
out = np.full(len(coords.l.deg), np.nan, dtype='f4')
for pole in self.poles:
m = (coords.b.deg >= 0) if pole == 'ngp' else (coords.b.deg < 0)
if np.any(m):
data, w = self._data[pole]
x, y = w.wcs_world2pix(coords.l.deg[m], coords.b.deg[m], 0)
out[m] = map_coordinates(data, [y, x], order=order, mode='nearest')
return out
示例2: bicubic_interpolation
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def bicubic_interpolation(LR, HR_shape):
LR_padded = np.zeros((LR.shape[0]+1,LR.shape[1]+1,LR.shape[2]+1))
LR_padded[:-1,:-1,:-1] = LR[:,:,:]
LR_padded[-1,:-1,:-1] = LR[0,:,:]
LR_padded[:-1,-1,:-1] = LR[:,0,:]
LR_padded[:-1,:-1,-1] = LR[:,:,0]
LR_padded[:-1,-1,-1] = LR[:,0,0]
LR_padded[-1,:-1,-1] = LR[0,:,0]
LR_padded[-1,-1,:-1] = LR[0,0,:]
LR_padded[-1,-1,-1] = LR[0,0,0]
x_HR = np.linspace(0, LR.shape[0], num=HR_shape[0]+1)[:-1]
y_HR = np.linspace(0, LR.shape[1], num=HR_shape[1]+1)[:-1]
z_HR = np.linspace(0, LR.shape[2], num=HR_shape[2]+1)[:-1]
xx, yy, zz = np.meshgrid(x_HR, y_HR, z_HR, indexing='ij')
xx = xx.reshape((-1))
yy = yy.reshape((-1))
zz = zz.reshape((-1))
out_BC = ndimage.map_coordinates(LR_padded, [xx, yy, zz], order=3, mode='wrap').reshape(HR_shape)
return out_BC
示例3: test_map_coordinates03
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def test_map_coordinates03(self):
data = numpy.array([[4, 1, 3, 2],
[7, 6, 8, 5],
[3, 5, 3, 6]], order='F')
idx = numpy.indices(data.shape) - 1
out = ndimage.map_coordinates(data, idx)
assert_array_almost_equal(out, [[0, 0, 0, 0],
[0, 4, 1, 3],
[0, 7, 6, 8]])
assert_array_almost_equal(out, ndimage.shift(data, (1, 1)))
idx = numpy.indices(data[::2].shape) - 1
out = ndimage.map_coordinates(data[::2], idx)
assert_array_almost_equal(out, [[0, 0, 0, 0],
[0, 4, 1, 3]])
assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1)))
idx = numpy.indices(data[:,::2].shape) - 1
out = ndimage.map_coordinates(data[:,::2], idx)
assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]])
assert_array_almost_equal(out, ndimage.shift(data[:,::2], (1, 1)))
示例4: test_uint64_max
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def test_uint64_max():
# Test interpolation respects uint64 max. Reported to fail at least on
# win32 (due to the 32 bit visual C compiler using signed int64 when
# converting between uint64 to double) and Debian on s390x.
# Interpolation is always done in double precision floating point, so we
# use the largest uint64 value for which int(float(big)) still fits in
# a uint64.
big = 2**64-1025
arr = np.array([big, big, big], dtype=np.uint64)
# Tests geometric transform (map_coordinates, affine_transform)
inds = np.indices(arr.shape) - 0.1
x = ndimage.map_coordinates(arr, inds)
assert_equal(x[1], int(float(big)))
assert_equal(x[2], int(float(big)))
# Tests zoom / shift
x = ndimage.shift(arr, 0.1)
assert_equal(x[1], int(float(big)))
assert_equal(x[2], int(float(big)))
示例5: test_map_coordinates03
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def test_map_coordinates03(self):
data = numpy.array([[4, 1, 3, 2],
[7, 6, 8, 5],
[3, 5, 3, 6]], order='F')
idx = numpy.indices(data.shape) - 1
out = ndimage.map_coordinates(data, idx)
assert_array_almost_equal(out, [[0, 0, 0, 0],
[0, 4, 1, 3],
[0, 7, 6, 8]])
assert_array_almost_equal(out, ndimage.shift(data, (1, 1)))
idx = numpy.indices(data[::2].shape) - 1
out = ndimage.map_coordinates(data[::2], idx)
assert_array_almost_equal(out, [[0, 0, 0, 0],
[0, 4, 1, 3]])
assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1)))
idx = numpy.indices(data[:, ::2].shape) - 1
out = ndimage.map_coordinates(data[:, ::2], idx)
assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]])
assert_array_almost_equal(out, ndimage.shift(data[:, ::2], (1, 1)))
示例6: __call__
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def __call__(self, img, steps=2):
n, m = np.shape(img)
def_imgs = []
xn, yn = np.meshgrid(np.arange(m), np.arange(n))
xn_mapped, yn_mapped = xn, yn
for i in range(steps):
if i == 0:
Ic = img
else:
if self.multiplicative:
xn_mapped, yn_mapped = self.coodinate_mapper(xn_mapped, yn_mapped)
else:
xn_mapped, yn_mapped = self.coodinate_mapper(xn, yn,frame=i)
Ic = nd.map_coordinates(img, np.array([yn_mapped, xn_mapped]), order=self.order, cval=0)
def_imgs.append(Ic)
return def_imgs
示例7: resample_inplace
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def resample_inplace(self, nbins):
"""
Change the shape of the histogram using an n-dimensional
interpolation function (via `ndimage.map_coordinates`).
Parameters
----------
nbins: tuple of int
a tuple of the new number of bins to resample_inplace
this histogram over (e.g. if the original histogram was
(100,100), setting bins to (200,200) would provide double
the resolution, with the interviening bins interpolated.
"""
oldbins = self._nbins
# iold = np.indices(oldbins)
inew = np.indices(nbins)
coords = np.array(
[inew[X] * (oldbins[X]) / float(nbins[X]) for X in range(len(nbins))]
)
self._nbins = nbins
self.data = ndimage.map_coordinates(self.data, coords)
self._bin_lower_edges = None # need to be recalculated
示例8: interpolate_slice
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def interpolate_slice(f3d, rot, pfac=2, size=None):
nhalf = f3d.shape[0] / 2
if size is None:
phalf = nhalf
else:
phalf = size / 2
qot = rot * pfac # Scaling!
px, py, pz = np.meshgrid(np.arange(-phalf, phalf), np.arange(-phalf, phalf), 0)
pr = np.sqrt(px ** 2 + py ** 2 + pz ** 2)
pcoords = np.vstack([px.reshape(-1), py.reshape(-1), pz.reshape(-1)])
mcoords = qot.T.dot(pcoords)
mcoords = mcoords[:, pr.reshape(-1) < nhalf]
pvals = map_coordinates(np.real(f3d), mcoords, order=1, mode="wrap") + \
1j * map_coordinates(np.imag(f3d), mcoords, order=1, mode="wrap")
pslice = np.zeros(pr.shape, dtype=np.complex)
pslice[pr < nhalf] = pvals
return pslice
示例9: sample_equirec
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def sample_equirec(e_img, coor_xy, order):
w = e_img.shape[1]
coor_x, coor_y = np.split(coor_xy, 2, axis=-1)
pad_u = np.roll(e_img[[0]], w // 2, 1)
pad_d = np.roll(e_img[[-1]], w // 2, 1)
e_img = np.concatenate([e_img, pad_d, pad_u], 0)
return map_coordinates(e_img, [coor_y, coor_x],
order=order, mode='wrap')[..., 0]
示例10: sample_cubefaces
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def sample_cubefaces(cube_faces, tp, coor_y, coor_x, order):
cube_faces = cube_faces.copy()
cube_faces[1] = np.flip(cube_faces[1], 1)
cube_faces[2] = np.flip(cube_faces[2], 1)
cube_faces[4] = np.flip(cube_faces[4], 0)
# Pad up down
pad_ud = np.zeros((6, 2, cube_faces.shape[2]))
pad_ud[0, 0] = cube_faces[5, 0, :]
pad_ud[0, 1] = cube_faces[4, -1, :]
pad_ud[1, 0] = cube_faces[5, :, -1]
pad_ud[1, 1] = cube_faces[4, ::-1, -1]
pad_ud[2, 0] = cube_faces[5, -1, ::-1]
pad_ud[2, 1] = cube_faces[4, 0, ::-1]
pad_ud[3, 0] = cube_faces[5, ::-1, 0]
pad_ud[3, 1] = cube_faces[4, :, 0]
pad_ud[4, 0] = cube_faces[0, 0, :]
pad_ud[4, 1] = cube_faces[2, 0, ::-1]
pad_ud[5, 0] = cube_faces[2, -1, ::-1]
pad_ud[5, 1] = cube_faces[0, -1, :]
cube_faces = np.concatenate([cube_faces, pad_ud], 1)
# Pad left right
pad_lr = np.zeros((6, cube_faces.shape[1], 2))
pad_lr[0, :, 0] = cube_faces[1, :, 0]
pad_lr[0, :, 1] = cube_faces[3, :, -1]
pad_lr[1, :, 0] = cube_faces[2, :, 0]
pad_lr[1, :, 1] = cube_faces[0, :, -1]
pad_lr[2, :, 0] = cube_faces[3, :, 0]
pad_lr[2, :, 1] = cube_faces[1, :, -1]
pad_lr[3, :, 0] = cube_faces[0, :, 0]
pad_lr[3, :, 1] = cube_faces[2, :, -1]
pad_lr[4, 1:-1, 0] = cube_faces[1, 0, ::-1]
pad_lr[4, 1:-1, 1] = cube_faces[3, 0, :]
pad_lr[5, 1:-1, 0] = cube_faces[1, -2, :]
pad_lr[5, 1:-1, 1] = cube_faces[3, -2, ::-1]
cube_faces = np.concatenate([cube_faces, pad_lr], 2)
return map_coordinates(cube_faces, [tp, coor_y, coor_x], order=order, mode='wrap')
示例11: fuv2img
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def fuv2img(fuv, coorW=1024, floorW=1024, floorH=512):
'''
Project 1d signal in uv space to 2d floor plane image
'''
floor_plane_x, floor_plane_y = np.meshgrid(range(floorW), range(floorH))
floor_plane_x, floor_plane_y = -(floor_plane_y - floorH / 2), floor_plane_x - floorW / 2
floor_plane_coridx = (np.arctan2(floor_plane_y, floor_plane_x) / (2 * PI) + 0.5) * coorW - 0.5
floor_plane = map_coordinates(fuv, floor_plane_coridx.reshape(1, -1), order=1, mode='wrap')
floor_plane = floor_plane.reshape(floorH, floorW)
return floor_plane
示例12: make_comparison_plots
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def make_comparison_plots(LR, HR, out, output_label='Generated output'):
vmin = HR.min()
vmax = HR.max()
LR_padded = np.zeros((LR.shape[0]+1,LR.shape[1]+1))
LR_padded[:-1,:-1] = LR[:,:]
LR_padded[-1,:-1] = LR[0,:]
LR_padded[:-1,-1] = LR[:,0]
LR_padded[-1,-1] = LR[0,0]
x_HR = np.linspace(0, LR.shape[0], num=HR.shape[0]+1)[:-1]
y_HR = np.linspace(0, LR.shape[1], num=HR.shape[1]+1)[:-1]
print(x_HR)
yy, xx = np.meshgrid(y_HR, x_HR)
xx = xx.reshape((-1))
yy = yy.reshape((-1))
out_BC = ndimage.map_coordinates(LR_padded, [xx, yy], order=3, mode='wrap').reshape(HR.shape)
fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, sharey=True, figsize=(17,5))
im1 = plot(LR, ax1, vmin=vmin, vmax=vmax)
ax1.set_title('Low resolution')
im2 = plot(out_BC, ax2, vmin=vmin, vmax=vmax)
ax2.set_title('Bicubic')
im3 = plot(out, ax3, vmin=vmin, vmax=vmax)
ax3.set_title(output_label)
im4 = plot(HR, ax4, vmin=vmin, vmax=vmax)
ax4.set_title('High resolution')
fig.tight_layout()
return fig, (ax1, ax2, ax3, ax4)
示例13: __init__
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def __init__(self, skeleton_image, *, spacing=1, source_image=None,
_buffer_size_offset=None, keep_images=True,
unique_junctions=True):
graph, coords, degrees = skeleton_to_csgraph(skeleton_image,
spacing=spacing,
unique_junctions=unique_junctions)
if np.issubdtype(skeleton_image.dtype, np.float_):
pixel_values = ndi.map_coordinates(skeleton_image, coords.T,
order=3)
else:
pixel_values = None
self.graph = graph
self.nbgraph = csr_to_nbgraph(graph, pixel_values)
self.coordinates = coords
self.paths = _build_skeleton_path_graph(self.nbgraph,
_buffer_size_offset=_buffer_size_offset)
self.n_paths = self.paths.shape[0]
self.distances = np.empty(self.n_paths, dtype=float)
self._distances_initialized = False
self.skeleton_image = None
self.source_image = None
self.degrees_image = degrees
self.degrees = np.diff(self.graph.indptr)
self.spacing = (np.asarray(spacing) if not np.isscalar(spacing)
else np.full(skeleton_image.ndim, spacing))
if keep_images:
self.skeleton_image = skeleton_image
self.source_image = source_image
示例14: distort_with_noise
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def distort_with_noise(image, deltas, order=1):
assert deltas.shape[0] == 2
assert image.shape == deltas.shape[1:], (image.shape, deltas.shape)
n, m = image.shape
xy = np.transpose(np.array(np.meshgrid(
range(n), range(m))), axes=[0, 2, 1])
deltas += xy
return ndi.map_coordinates(image, deltas, order=order, mode="reflect")
示例15: el_field
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import map_coordinates [as 別名]
def el_field(self, X, Q, gamma, nxyz):
N = X.shape[0]
X[:, 2] = X[:, 2] * gamma
XX = np.max(X, axis=0) - np.min(X, axis=0)
if self.random_mesh:
XX = XX * np.random.uniform(low=1, high=1.1)
logger.debug('mesh steps:' + str(XX))
# here we use a fast 3D "near-point" interpolation
# we need a stand-alone module with 1D,2D,3D parricles-to-grid functions
steps = XX / (nxyz - 3)
X = X / steps
X_min = np.min(X, axis=0)
X_mid = np.dot(Q, X) / np.sum(Q)
X_off = np.floor(X_min - X_mid) + X_mid
if self.random_mesh:
X_off = X_off + np.random.uniform(low=-0.5, high=0.5)
X = X - X_off
nx = nxyz[0]
ny = nxyz[1]
nz = nxyz[2]
nzny = nz * ny
Xi = np.int_(np.floor(X) + 1)
inds = np.int_(Xi[:, 0] * nzny + Xi[:, 1] * nz + Xi[:, 2]) # 3d -> 1d
q = np.bincount(inds, Q, nzny * nx).reshape(nxyz)
p = self.potential(q, steps)
Ex = np.zeros(p.shape)
Ey = np.zeros(p.shape)
Ez = np.zeros(p.shape)
Ex[:nx - 1, :, :] = (p[:nx - 1, :, :] - p[1:nx, :, :]) / steps[0]
Ey[:, :ny - 1, :] = (p[:, :ny - 1, :] - p[:, 1:ny, :]) / steps[1]
Ez[:, :, :nz - 1] = (p[:, :, :nz - 1] - p[:, :, 1:nz]) / steps[2]
Exyz = np.zeros((N, 3))
Exyz[:, 0] = ndimage.map_coordinates(Ex, np.c_[X[:, 0], X[:, 1] + 0.5, X[:, 2] + 0.5].T, order=1) * gamma
Exyz[:, 1] = ndimage.map_coordinates(Ey, np.c_[X[:, 0] + 0.5, X[:, 1], X[:, 2] + 0.5].T, order=1) * gamma
Exyz[:, 2] = ndimage.map_coordinates(Ez, np.c_[X[:, 0] + 0.5, X[:, 1] + 0.5, X[:, 2]].T, order=1)
return Exyz