本文整理匯總了Python中scipy.ndimage.laplace方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.laplace方法的具體用法?Python ndimage.laplace怎麽用?Python ndimage.laplace使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage
的用法示例。
在下文中一共展示了ndimage.laplace方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_laplace01
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def test_laplace01(self):
for type in [numpy.int32, numpy.float32, numpy.float64]:
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]], type) * 100
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
output = ndimage.laplace(array)
assert_array_almost_equal(tmp1 + tmp2, output)
示例2: test_laplace02
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def test_laplace02(self):
for type in [numpy.int32, numpy.float32, numpy.float64]:
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]], type) * 100
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
output = numpy.zeros(array.shape, type)
ndimage.laplace(array, output=output)
assert_array_almost_equal(tmp1 + tmp2, output)
示例3: test_laplace01
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def test_laplace01(self):
for type_ in [numpy.int32, numpy.float32, numpy.float64]:
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]], type_) * 100
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
output = ndimage.laplace(array)
assert_array_almost_equal(tmp1 + tmp2, output)
示例4: test_laplace02
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def test_laplace02(self):
for type_ in [numpy.int32, numpy.float32, numpy.float64]:
array = numpy.array([[3, 2, 5, 1, 4],
[5, 8, 3, 7, 1],
[5, 6, 9, 3, 5]], type_) * 100
tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
output = numpy.zeros(array.shape, type_)
ndimage.laplace(array, output=output)
assert_array_almost_equal(tmp1 + tmp2, output)
示例5: test_multiple_modes
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def test_multiple_modes():
# Test that the filters with multiple mode cababilities for different
# dimensions give the same result as applying a single mode.
arr = np.array([[1., 0., 0.],
[1., 1., 0.],
[0., 0., 0.]])
mode1 = 'reflect'
mode2 = ['reflect', 'reflect']
assert_equal(sndi.gaussian_filter(arr, 1, mode=mode1),
sndi.gaussian_filter(arr, 1, mode=mode2))
assert_equal(sndi.prewitt(arr, mode=mode1),
sndi.prewitt(arr, mode=mode2))
assert_equal(sndi.sobel(arr, mode=mode1),
sndi.sobel(arr, mode=mode2))
assert_equal(sndi.laplace(arr, mode=mode1),
sndi.laplace(arr, mode=mode2))
assert_equal(sndi.gaussian_laplace(arr, 1, mode=mode1),
sndi.gaussian_laplace(arr, 1, mode=mode2))
assert_equal(sndi.maximum_filter(arr, size=5, mode=mode1),
sndi.maximum_filter(arr, size=5, mode=mode2))
assert_equal(sndi.minimum_filter(arr, size=5, mode=mode1),
sndi.minimum_filter(arr, size=5, mode=mode2))
assert_equal(sndi.gaussian_gradient_magnitude(arr, 1, mode=mode1),
sndi.gaussian_gradient_magnitude(arr, 1, mode=mode2))
assert_equal(sndi.uniform_filter(arr, 5, mode=mode1),
sndi.uniform_filter(arr, 5, mode=mode2))
示例6: test_multiple_modes_laplace
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def test_multiple_modes_laplace():
# Test laplace filter for multiple extrapolation modes
arr = np.array([[1., 0., 0.],
[1., 1., 0.],
[0., 0., 0.]])
expected = np.array([[-2., 2., 1.],
[-2., -3., 2.],
[1., 1., 0.]])
modes = ['reflect', 'wrap']
assert_equal(expected,
sndi.laplace(arr, mode=modes))
示例7: plot_tree
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def plot_tree(max_depth=1):
fig, ax = plt.subplots(1, 2, figsize=(15, 7))
h = 0.02
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
if max_depth != 0:
tree = DecisionTreeClassifier(max_depth=max_depth, random_state=1).fit(X, y)
Z = tree.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
Z = Z.reshape(xx.shape)
faces = tree.tree_.apply(np.c_[xx.ravel(), yy.ravel()].astype(np.float32))
faces = faces.reshape(xx.shape)
border = ndimage.laplace(faces) != 0
ax[0].contourf(xx, yy, Z, alpha=.4)
ax[0].scatter(xx[border], yy[border], marker='.', s=1)
ax[0].set_title("max_depth = %d" % max_depth)
ax[1].imshow(tree_image(tree))
ax[1].axis("off")
else:
ax[0].set_title("data set")
ax[1].set_visible(False)
ax[0].scatter(X[:, 0], X[:, 1], c=np.array(['b', 'r'])[y], s=60)
ax[0].set_xlim(x_min, x_max)
ax[0].set_ylim(y_min, y_max)
ax[0].set_xticks(())
ax[0].set_yticks(())
示例8: __init__
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def __init__(self, upsample_factor=1, max_displacement=None,
num_images_for_mean=100,
randomise_frames=True, err_thresh=0.01, max_iterations=5,
rotation_scaling=False, save_fmt='mptiff', save_name=None,
n_processes=1, verbose=False, return_registered=False,
laplace=0.0):
self._params = dict(locals())
del self._params['self']
示例9: run_FreeCAD_ImageT
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import laplace [as 別名]
def run_FreeCAD_ImageT(self):
from scipy import ndimage
fn=self.getData('image')
import matplotlib.image as mpimg
img=mpimg.imread(fn)
(sa,sb,sc)=img.shape
red=0.005*(self.getData("red")+100)
green=0.005*(self.getData("green")+100)
blue=0.005*(self.getData("blue")+100)
#blue=0
say("rgb",red,green,blue)
# andere filtre
#img = ndimage.sobel(img)
#img = ndimage.laplace(img)
im2=img[:,:,0]*red+img[:,:,1]*green+img[:,:,2]*blue
im2=np.round(im2)
if self.getData('invert'):
im2 = 1- im2
#im2 = ndimage.sobel(im2)
ss=int((self.getData('maskSize')+100)/20)
say("ss",ss)
if ss != 0:
mode=self.getData('mode')
say("mode",mode)
if mode=='closing':
im2=ndimage.grey_closing(im2, size=(ss,ss))
elif mode=='opening':
im2=ndimage.grey_opening(im2, size=(ss,ss))
elif mode=='erosion':
im2=ndimage.grey_erosion(im2, size=(ss,ss))
elif mode=='dilitation':
im2=ndimage.grey_dilation(im2, footprint=np.ones((ss,ss)))
else:
say("NO MODE")
nonzes=np.where(im2 == 0)
pts = [FreeCAD.Vector(sb+-x,sa-y) for y,x in np.array(nonzes).swapaxes(0,1)]
h=10
pts = [FreeCAD.Vector(sb+-x,sa-y,(red*img[y,x,0]+green*img[y,x,1]+blue*img[y,x,2])*h) for y,x in np.array(nonzes).swapaxes(0,1)]
colors=[img[y,x] for y,x in np.array(nonzes).swapaxes(0,1)]
say("len pts",len(pts))
self.setData("Points_out",pts)