當前位置: 首頁>>代碼示例>>Python>>正文


Python interpolation.shift方法代碼示例

本文整理匯總了Python中scipy.ndimage.interpolation.shift方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolation.shift方法的具體用法?Python interpolation.shift怎麽用?Python interpolation.shift使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.interpolation的用法示例。


在下文中一共展示了interpolation.shift方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: highres

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def highres(y,kind='cubic',res=100):
    '''
    Interpolate data onto a higher resolution grid by a factor of *res*

    Args:
        y (1d array/list): signal to be interpolated
        kind (str): order of interpolation (see docs for scipy.interpolate.interp1d)
        res (int): factor to increase resolution of data via linear interpolation
    
    Returns:
        shift (float): offset between target and reference signal 
    '''
    y = np.array(y)
    x = np.arange(0, y.shape[0])
    f = interp1d(x, y,kind='cubic')
    xnew = np.linspace(0, x.shape[0]-1, x.shape[0]*res)
    ynew = f(xnew)
    return xnew,ynew 
開發者ID:pearsonkyle,項目名稱:Signal-Alignment,代碼行數:20,代碼來源:signal_alignment.py

示例2: computeBackwardPrior

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def computeBackwardPrior(self, posterior, t):
        # determine grid axis along which to shift the distribution
        axisToTransform = self.study.observationModel.parameterNames.index(self.selectedParameter)

        # compute offset to shift parameter grid
        params = {name: value for (name, value) in zip(self.hyperParameterNames, self.hyperParameterValues)}
        ftm1 = self.function(t - 1 - self.tOffset, **params)
        ft = self.function(t - self.tOffset, **params)
        d = ftm1 - ft

        # normalize offset with respect to lattice constant of parameter grid
        d /= self.latticeConstant[axisToTransform]

        # build list for all axes of parameter grid (setting only the selected axis to a non-zero value)
        dAll = [0] * len(self.latticeConstant)
        dAll[axisToTransform] = d

        # shift interpolated version of distribution
        newPrior = shift(posterior, dAll, order=3, mode='nearest')

        # transformation above may violate proper normalization; re-normalization needed
        newPrior /= np.sum(newPrior)

        return newPrior 
開發者ID:christophmark,項目名稱:bayesloop,代碼行數:26,代碼來源:transitionModels.py

示例3: bounce

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def bounce(dataframe: DataFrame, level):
    """

    :param dataframe:
    :param level:
    :return:
      1 if it bounces up
      0 if no bounce
     -1 if it bounces below
    """

    from scipy.ndimage.interpolation import shift
    open = dataframe['open']
    close = dataframe['close']
    touch = shift(touches(dataframe, level), 1, cval=np.NAN)

    return np.vectorize(_bounce)(open, close, level, touch) 
開發者ID:freqtrade,項目名稱:technical,代碼行數:19,代碼來源:bouncyhouse.py

示例4: _getfilename

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def _getfilename():
    global IM, text
    fn = filedialog.askopenfilename()

    # update what is occurring text box
    text.delete(1.0, tk.END)
    text.insert(tk.END, "reading image file {:s}\n".format(fn))
    canvas.draw()

    # read image file
    if ".txt" in fn:
        IM = np.loadtxt(fn)
    else:
        IM = imread(fn)

    if IM.shape[0] % 2 == 0:
        text.insert(tk.END, "make image odd size")
        IM = shift(IM, (-0.5, -0.5))[:-1, :-1]

    # show the image
    _display() 
開發者ID:PyAbel,項目名稱:PyAbel,代碼行數:23,代碼來源:example_simple_GUI.py

示例5: center_kernel

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def center_kernel(kernel, iterations=20):
    """
    given a kernel that might not be perfectly centered, this routine computes its light weighted center and then
    moves the center in an iterative process such that it is centered

    :param kernel: 2d array (odd numbers)
    :param iterations: int, number of iterations
    :return: centered kernel
    """
    kernel = kernel_norm(kernel)
    nx, ny = np.shape(kernel)
    if nx %2 == 0:
        raise ValueError("kernel needs odd number of pixels")
    # make coordinate grid of kernel
    x_grid, y_grid = util.make_grid(nx, deltapix=1, left_lower=False)
    # compute 1st moments to get light weighted center
    x_w = np.sum(kernel * util.array2image(x_grid))
    y_w = np.sum(kernel * util.array2image(y_grid))
    # de-shift kernel
    kernel_centered = de_shift_kernel(kernel, shift_x=-x_w, shift_y=-y_w, iterations=iterations)
    return kernel_norm(kernel_centered) 
開發者ID:sibirrer,項目名稱:lenstronomy,代碼行數:23,代碼來源:kernel_util.py

示例6: add_layer2image

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def add_layer2image(grid2d, x_pos, y_pos, kernel, order=1):
    """
    adds a kernel on the grid2d image at position x_pos, y_pos with an interpolated subgrid pixel shift of order=order
    :param grid2d: 2d pixel grid (i.e. image)
    :param x_pos: x-position center (pixel coordinate) of the layer to be added
    :param y_pos: y-position center (pixel coordinate) of the layer to be added
    :param kernel: the layer to be added to the image
    :param order: interpolation order for sub-pixel shift of the kernel to be added
    :return: image with added layer, cut to original size
    """

    x_int = int(round(x_pos))
    y_int = int(round(y_pos))
    shift_x = x_int - x_pos
    shift_y = y_int - y_pos
    kernel_shifted = interp.shift(kernel, [-shift_y, -shift_x], order=order)
    return add_layer2image_int(grid2d, x_int, y_int, kernel_shifted) 
開發者ID:sibirrer,項目名稱:lenstronomy,代碼行數:19,代碼來源:image_util.py

示例7: test_cutout_source

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def test_cutout_source():
    """
    test whether a shifted psf can be reproduced sufficiently well
    :return:
    """
    kernel_size = 5
    image = np.zeros((10, 10))
    kernel = np.zeros((kernel_size, kernel_size))
    kernel[2, 2] = 1
    shift_x = 0.5
    shift_y = 0
    x_c, y_c = 5, 5
    x_pos = x_c + shift_x
    y_pos = y_c + shift_y
    #kernel_shifted = interp.shift(kernel, [shift_y, shift_x], order=1)
    image = image_util.add_layer2image(image, x_pos, y_pos, kernel, order=1)
    print(image)
    kernel_new = kernel_util.cutout_source(x_pos=x_pos, y_pos=y_pos, image=image, kernelsize=kernel_size)
    npt.assert_almost_equal(kernel_new[2, 2], kernel[2, 2], decimal=2) 
開發者ID:sibirrer,項目名稱:lenstronomy,代碼行數:21,代碼來源:test_kernel_util.py

示例8: test_cutout_source_border

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def test_cutout_source_border():
    kernel_size = 7
    image = np.zeros((10, 10))
    kernel = np.zeros((kernel_size, kernel_size))
    kernel[2, 2] = 1
    shift_x = +0.1
    shift_y = 0
    x_c, y_c = 2, 5
    x_pos = x_c + shift_x
    y_pos = y_c + shift_y
    #kernel_shifted = interp.shift(kernel, [shift_y, shift_x], order=1)
    image = image_util.add_layer2image(image, x_pos, y_pos, kernel, order=1)
    kernel_new = kernel_util.cutout_source(x_pos=x_pos, y_pos=y_pos, image=image, kernelsize=kernel_size)
    nx_new, ny_new = np.shape(kernel_new)
    print(kernel_new)
    assert nx_new == kernel_size
    assert ny_new == kernel_size
    npt.assert_almost_equal(kernel_new[2, 2], kernel[2, 2], decimal=2) 
開發者ID:sibirrer,項目名稱:lenstronomy,代碼行數:20,代碼來源:test_kernel_util.py

示例9: test_deshift_subgrid

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def test_deshift_subgrid():
    # test the de-shifting with a sharpened subgrid kernel
    kernel_size = 5
    subgrid = 3
    fwhm = 1
    kernel_subgrid_size = kernel_size * subgrid
    kernel_subgrid = np.zeros((kernel_subgrid_size, kernel_subgrid_size))
    kernel_subgrid[7, 7] = 2
    kernel_subgrid = kernel_util.kernel_gaussian(kernel_subgrid_size, 1./subgrid, fwhm=fwhm)

    kernel = util.averaging(kernel_subgrid, kernel_subgrid_size, kernel_size)

    shift_x = 0.18
    shift_y = 0.2
    shift_x_subgird = shift_x * subgrid
    shift_y_subgrid = shift_y * subgrid
    kernel_shifted_subgrid = interp.shift(kernel_subgrid, [-shift_y_subgrid, -shift_x_subgird], order=1)
    kernel_shifted = util.averaging(kernel_shifted_subgrid, kernel_subgrid_size, kernel_size)
    kernel_shifted_highres = kernel_util.subgrid_kernel(kernel_shifted, subgrid_res=subgrid, num_iter=1)
    #npt.assert_almost_equal(kernel_shifted_highres[7, 7], kernel_shifted_subgrid[7, 7], decimal=10) 
開發者ID:sibirrer,項目名稱:lenstronomy,代碼行數:22,代碼來源:test_kernel_util.py

示例10: test_shift_long_dist

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def test_shift_long_dist():
    """
    input is a shifted kernel by more than 1 pixel
    :return:
    """

    kernel_size = 9
    kernel = np.zeros((kernel_size, kernel_size))
    kernel[4, 4] = 2.
    shift_x = 2.
    shift_y = 1.
    input_kernel = interp.shift(kernel, [-shift_y, -shift_x], order=1)
    old_style_kernel = interp.shift(input_kernel, [shift_y, shift_x], order=1)
    shifted_new = kernel_util.de_shift_kernel(input_kernel, shift_x, shift_y)
    assert kernel[3, 2] == shifted_new[3, 2]
    assert np.max(old_style_kernel - shifted_new) < 0.01 
開發者ID:sibirrer,項目名稱:lenstronomy,代碼行數:18,代碼來源:test_kernel_util.py

示例11: drop_shadow

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def drop_shadow(self, alpha, theta, shift, size, op=0.80):
        """
        alpha : alpha layer whose shadow need to be cast
        theta : [0,2pi] -- the shadow direction
        shift : shift in pixels of the shadow
        size  : size of the GaussianBlur filter
        op    : opacity of the shadow (multiplying factor)

        @return : alpha of the shadow layer
                  (it is assumed that the color is black/white)
        """
        if size%2==0:
            size -= 1
            size = max(1,size)
        shadow = cv.GaussianBlur(alpha,(size,size),0)
        [dx,dy] = shift * np.array([-np.sin(theta), np.cos(theta)])
        shadow = op*sii.shift(shadow, shift=[dx,dy],mode='constant',cval=0)
        return shadow.astype('uint8') 
開發者ID:ankush-me,項目名稱:SynthText,代碼行數:20,代碼來源:colorize3_poisson.py

示例12: setup

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def setup(self, bottom, top):
		'''
		bottom blob:
		[ratemap]:	Nx1xFxT
		[amsFeature]:	NxMxFxT
		1.check bottom/top blob vector size
		2.read in parameters
	    	shift in T,F(time,frequency) domain
		'''
		# check input
		if len(bottom) != 1:
			raise Exception("Need one input to apply jitter.")
		self.shift_f = 0 # shift over frequency domain
		self.shift_t = 0 # shift over time domain

#		self.forwardIter = 0

		params = eval(self.param_str)	# read in as dictionary
       		# set parameters according to the train_val.prototxt,
        	# use python built-in function for dictionary
    		self.min_shift_f = params.get('min_shift_f',0)
    		self.max_shift_f = params.get('max_shift_f',0)
		self.min_shift_t = params.get('min_shift_t',0)
		self.max_shift_t = params.get('max_shift_t',0) 
開發者ID:nigroup,項目名稱:nideep,代碼行數:26,代碼來源:caffe_jitterlayer.py

示例13: damage_masks

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def damage_masks(labels, shift=True, scale=True, rotate=True, dilate=True):
  """Damages segmentation masks by random transformations.

  Args:
    labels: Int32 labels tensor of shape (height, width, 1).
    shift: Boolean, whether to damage the masks by shifting.
    scale: Boolean, whether to damage the masks by scaling.
    rotate: Boolean, whether to damage the masks by rotation.
    dilate: Boolean, whether to damage the masks by dilation.

  Returns:
    The damaged version of labels.
  """
  def _damage_masks_np(labels_):
    return damage_masks_np(labels_, shift, scale, rotate, dilate)
  damaged_masks = tf.py_func(_damage_masks_np, [labels], tf.int32,
                             name='damage_masks')
  damaged_masks.set_shape(labels.get_shape())
  return damaged_masks 
開發者ID:tensorflow,項目名稱:models,代碼行數:21,代碼來源:mask_damaging.py

示例14: damage_masks_np

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def damage_masks_np(labels, shift=True, scale=True, rotate=True, dilate=True):
  """Performs the actual mask damaging in numpy.

  Args:
    labels: Int32 numpy array of shape (height, width, 1).
    shift: Boolean, whether to damage the masks by shifting.
    scale: Boolean, whether to damage the masks by scaling.
    rotate: Boolean, whether to damage the masks by rotation.
    dilate: Boolean, whether to damage the masks by dilation.

  Returns:
    The damaged version of labels.
  """
  unique_labels = np.unique(labels)
  unique_labels = np.setdiff1d(unique_labels, [0])
  # Shuffle to get random depth ordering when combining together.
  np.random.shuffle(unique_labels)
  damaged_labels = np.zeros_like(labels)
  for l in unique_labels:
    obj_mask = (labels == l)
    damaged_obj_mask = _damage_single_object_mask(obj_mask, shift, scale,
                                                  rotate, dilate)
    damaged_labels[damaged_obj_mask] = l
  return damaged_labels 
開發者ID:tensorflow,項目名稱:models,代碼行數:26,代碼來源:mask_damaging.py

示例15: _damage_single_object_mask

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import shift [as 別名]
def _damage_single_object_mask(mask, shift, scale, rotate, dilate):
  """Performs mask damaging in numpy for a single object.

  Args:
    mask: Boolean numpy array of shape(height, width, 1).
    shift: Boolean, whether to damage the masks by shifting.
    scale: Boolean, whether to damage the masks by scaling.
    rotate: Boolean, whether to damage the masks by rotation.
    dilate: Boolean, whether to damage the masks by dilation.

  Returns:
    The damaged version of mask.
  """
  # For now we just do shifting and scaling. Better would be Affine or thin
  # spline plate transformations.
  if shift:
    mask = _shift_mask(mask)
  if scale:
    mask = _scale_mask(mask)
  if rotate:
    mask = _rotate_mask(mask)
  if dilate:
    mask = _dilate_mask(mask)
  return mask 
開發者ID:tensorflow,項目名稱:models,代碼行數:26,代碼來源:mask_damaging.py


注:本文中的scipy.ndimage.interpolation.shift方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。