當前位置: 首頁>>代碼示例>>Python>>正文


Python interpolation.map_coordinates方法代碼示例

本文整理匯總了Python中scipy.ndimage.interpolation.map_coordinates方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolation.map_coordinates方法的具體用法?Python interpolation.map_coordinates怎麽用?Python interpolation.map_coordinates使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.interpolation的用法示例。


在下文中一共展示了interpolation.map_coordinates方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, alpha=1000, sigma=30, spline_order=1, mode='nearest', random_state=np.random):
    """Elastic deformation of image as described in [Simard2003]_.
    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
       Convolutional Neural Networks applied to Visual Document Analysis", in
       Proc. of the International Conference on Document Analysis and
       Recognition, 2003.
    """
    assert image.ndim == 3
    shape = image.shape[:2]

    dx = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha
    dy = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha

    x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
    indices = [np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))]
    result = np.empty_like(image)
    for i in range(image.shape[2]):
        result[:, :, i] = map_coordinates(
            image[:, :, i], indices, order=spline_order, mode=mode).reshape(shape)
    return result 
開發者ID:ozan-oktay,項目名稱:Attention-Gated-Networks,代碼行數:24,代碼來源:myImageTransformations.py

示例2: map_wrap

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def map_wrap(f, coords):

    # Create an agumented array, where the last row and column are added at the beginning of the axes
    fa = np.empty((f.shape[0] + 1, f.shape[1] + 1))
    #fa[1:, 1:] = f
    #fa[0, 1:] = f[-1, :]
    #fa[1:, 0] = f[:, -1]
    #f[0, 0] = f[-1, -1]
    fa[:-1, :-1] = f
    fa[-1, :-1] = f[0, :]
    fa[:-1, -1] = f[:, 0]
    fa[-1, -1] = f[0, 0]

    # Wrap coordinates
    wrapped_coords_x = coords[0, ...] % f.shape[0]
    wrapped_coords_y = coords[1, ...] % f.shape[1]
    wrapped_coords = np.r_[wrapped_coords_x[None, ...], wrapped_coords_y[None, ...]]

    # Interpolate
    #return fa, wrapped_coords, map_coordinates(f, wrapped_coords, order=1, mode='constant', cval=np.nan, prefilter=False)
    return map_coordinates(fa, wrapped_coords, order=1, mode='constant', cval=np.nan, prefilter=False) 
開發者ID:AMLab-Amsterdam,項目名稱:lie_learn,代碼行數:23,代碼來源:SE2FFT.py

示例3: elastic_distort

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_distort(image, alpha, sigma):
    """Perform elastic distortion on an image.

    Here, alpha refers to the scaling factor that controls the intensity of the
    deformation. The sigma variable refers to the Gaussian filter standard
    deviation.
    """
    random_state = numpy.random.RandomState(None)
    shape = image.shape

    dx = gaussian_filter(
        (random_state.rand(*shape) * 2 - 1),
        sigma, mode="constant"
    ) * alpha
    dy = gaussian_filter(
        (random_state.rand(*shape) * 2 - 1),
        sigma, mode="constant"
    ) * alpha

    x, y = numpy.meshgrid(numpy.arange(shape[0]), numpy.arange(shape[1]))
    indices = numpy.reshape(y+dy, (-1, 1)), numpy.reshape(x+dx, (-1, 1))
    return map_coordinates(image, indices, order=1).reshape(shape) 
開發者ID:IBM,項目名稱:tensorflow-hangul-recognition,代碼行數:24,代碼來源:hangul-image-generator.py

示例4: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, label, alpha=1000, sigma=30, spline_order=1, mode='nearest', random_state=np.random):
    """Elastic deformation of image as described in [Simard2003]_.
    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
       Convolutional Neural Networks applied to Visual Document Analysis", in
       Proc. of the International Conference on Document Analysis and
       Recognition, 2003.
    """
    #assert image.ndim == 3
    image = np.array(image)
    label = np.array(label)
    shape = image.shape[:2]

    dx = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha
    dy = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha

    x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
    indices = [np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))]

    result1 = map_coordinates(image, indices, order=spline_order, mode=mode).reshape(shape)
    result2 = map_coordinates(label, indices, order=spline_order, mode=mode).reshape(shape)
    return Image.fromarray(result1), Image.fromarray(result2) 
開發者ID:cv-lee,項目名稱:BraTs,代碼行數:25,代碼來源:dataset.py

示例5: TF_elastic_deform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def TF_elastic_deform(img, alpha=1.0, sigma=1.0):
    """Elastic deformation of images as described in Simard 2003"""
    assert len(img.shape) == 3
    h, w, nc = img.shape
    if nc != 1:
        raise NotImplementedError("Multi-channel not implemented.")

    # Generate uniformly random displacement vectors, then convolve with gaussian kernel
    # and finally multiply by a magnitude coefficient alpha
    dx = alpha * gaussian_filter(
        (np.random.random((h, w)) * 2 - 1), sigma, mode="constant", cval=0
    )
    dy = alpha * gaussian_filter(
        (np.random.random((h, w)) * 2 - 1), sigma, mode="constant", cval=0
    )

    # Map image to the deformation mesh
    x, y    = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
    indices = np.reshape(x+dx, (-1, 1)), np.reshape(y+dy, (-1, 1))

    return map_coordinates(img.reshape((h,w)), indices, order=1).reshape(h,w,nc) 
開發者ID:HazyResearch,項目名稱:tanda,代碼行數:23,代碼來源:image_tfs.py

示例6: mask_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def mask_transform(mask, coordinates):
    h, w = mask.shape
    nb_mask = mask.max()

    yt, xt = coordinates
    y_floor, x_floor = np.floor(yt), np.floor(xt)    

    score = np.zeros((h, w, nb_mask,))    
    for (y_shift, x_shift) in [(0,0),(0,1),(1,0),(1,1)]:
        mask_index = map_coordinates(mask, (y_floor+y_shift, x_floor+x_shift), 
             order=0, mode='constant')
        index = mask_index!=0
        dist = np.sqrt((yt[index]-y_floor[index]-y_shift)**2+(xt[index]-x_floor[index]-x_shift)**2)
        score[index, mask_index[index]-1] += 1/dist
 
    index = score.sum(2)!=0
    mask_trans = np.zeros_like(mask)
    mask_trans[index]= score[index].argmax(1)+1
    return mask_trans 
開發者ID:jacobkie,項目名稱:2018DSB,代碼行數:21,代碼來源:preprocess.py

示例7: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image,elastic_value_x ,elastic_value_y):
    """Elastic deformation of images as described in [Simard2003]_ (with modifications JUST in Y-DIRECTION).
    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
         Convolutional Neural Networks applied to Visual Document Analysis", in
         Proc. of the International Conference on Document Analysis and
         Recognition, 2003.

     Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5
    """
    shape = image.shape
    random_state = np.random.RandomState(None)
    nY = shape[0] // 25
    nX = shape[1] // 25
    sigma = min(shape[1], shape[0]) * 0.0025
    alpha_X = elastic_value_x * min(shape[0], shape[1])
    alpha_Y = elastic_value_y * min(shape[0], shape[1])
    dx = gaussian_filter((random_state.rand(nY, nX) * 2 - 1), sigma)
    dy = gaussian_filter((random_state.rand(nY, nX) * 2 - 1), sigma)
    x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
    dx = misc.imresize(dx, [shape[0], shape[1]], interp='bicubic')
    dy = misc.imresize(dy, [shape[0], shape[1]], interp='bicubic')
    # plt.imshow(dx, cmap=plt.cm.gray)
    # plt.show()
    dxT = []
    dyT = []
    for dummy in range(shape[2]):
        dxT.append(dx)
        dyT.append(dy)
    dx = np.dstack(dxT)
    dy = np.dstack(dyT)
    dx = dx * alpha_X
    dy = dy * alpha_Y
    indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
    image = map_coordinates(image, indices, order=1).reshape(shape)
    return image 
開發者ID:TobiasGruening,項目名稱:ARU-Net,代碼行數:37,代碼來源:util.py

示例8: _get_field

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def _get_field(nifti_image, coords, coil_matrix, get_norm=False):
    ''' This function is also used in the GUI '''
    from scipy.ndimage import interpolation
    if isinstance(nifti_image, str):
        nifti_image = nib.load(nifti_image)
    elif isinstance(nifti_image, nib.nifti1.Nifti1Image):
        pass
    else:
        raise NameError('Failed to parse input volume (not string or nibabel nifti1 volume)')
    iM = np.dot(np.linalg.pinv(nifti_image.affine),
                np.linalg.pinv(coil_matrix))

    # gets the coordinates in voxel space
    voxcoords = np.dot(iM[:3, :3], coords.T) + iM[:3, 3][:, np.newaxis]

    # Interpolates the values of the field in the given coordinates
    out = np.zeros((3, voxcoords.shape[1]))
    for dim in range(3):
        out[dim] = interpolation.map_coordinates(nifti_image.get_data()[..., dim],
                                                 voxcoords,
                                                 order=1)

    # Rotates the field
    out = np.dot(coil_matrix[:3, :3], out)
    if get_norm:
        out = np.linalg.norm(out, axis=0)
    return out 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:29,代碼來源:coil_numpy.py

示例9: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, severity=1):
    c = [(244 * 2, 244 * 0.7, 244 * 0.1),   # 244 should have been 224, but ultimately nothing is incorrect
         (244 * 2, 244 * 0.08, 244 * 0.2),
         (244 * 0.05, 244 * 0.01, 244 * 0.02),
         (244 * 0.07, 244 * 0.01, 244 * 0.02),
         (244 * 0.12, 244 * 0.01, 244 * 0.02)][severity - 1]

    image = np.array(image, dtype=np.float32) / 255.
    shape = image.shape
    shape_size = shape[:2]

    # random affine
    center_square = np.float32(shape_size) // 2
    square_size = min(shape_size) // 3
    pts1 = np.float32([center_square + square_size,
                       [center_square[0] + square_size, center_square[1] - square_size],
                       center_square - square_size])
    pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32)
    M = cv2.getAffineTransform(pts1, pts2)
    image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)

    dx = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dy = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]

    x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
    indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
    return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255


# /////////////// End Corruptions /////////////// 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:35,代碼來源:corruptions.py

示例10: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, severity=1):
    c = [(244 * 2, 244 * 0.7, 244 * 0.1),   # 244 should have been 224, but ultimately nothing is incorrect
         (244 * 2, 244 * 0.08, 244 * 0.2),
         (244 * 0.05, 244 * 0.01, 244 * 0.02),
         (244 * 0.07, 244 * 0.01, 244 * 0.02),
         (244 * 0.12, 244 * 0.01, 244 * 0.02)][severity - 1]

    image = np.array(image, dtype=np.float32) / 255.
    shape = image.shape
    shape_size = shape[:2]

    # random affine
    center_square = np.float32(shape_size) // 2
    square_size = min(shape_size) // 3
    pts1 = np.float32([center_square + square_size,
                       [center_square[0] + square_size, center_square[1] - square_size],
                       center_square - square_size])
    pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32)
    M = cv2.getAffineTransform(pts1, pts2)
    image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)

    dx = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dy = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]

    x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
    indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
    return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255


# /////////////// End Distortions ///////////////


# /////////////// Further Setup /////////////// 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:38,代碼來源:make_imagenet_c.py

示例11: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, severity=1):
    IMSIZE = 32
    c = [(IMSIZE*0, IMSIZE*0, IMSIZE*0.08),
         (IMSIZE*0.05, IMSIZE*0.2, IMSIZE*0.07),
         (IMSIZE*0.08, IMSIZE*0.06, IMSIZE*0.06),
         (IMSIZE*0.1, IMSIZE*0.04, IMSIZE*0.05),
         (IMSIZE*0.1, IMSIZE*0.03, IMSIZE*0.03)][severity - 1]

    image = np.array(image, dtype=np.float32) / 255.
    shape = image.shape
    shape_size = shape[:2]

    # random affine
    center_square = np.float32(shape_size) // 2
    square_size = min(shape_size) // 3
    pts1 = np.float32([center_square + square_size,
                       [center_square[0] + square_size, center_square[1] - square_size],
                       center_square - square_size])
    pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32)
    M = cv2.getAffineTransform(pts1, pts2)
    image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)

    dx = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dy = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]

    x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
    indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
    return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255


# /////////////// End Distortions /////////////// 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:36,代碼來源:make_cifar_c.py

示例12: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, severity=1):
    IMSIZE = 64
    c = [(IMSIZE*0, IMSIZE*0, IMSIZE*0.08),
         (IMSIZE*0.05, IMSIZE*0.3, IMSIZE*0.06),
         (IMSIZE*0.1, IMSIZE*0.08, IMSIZE*0.06),
         (IMSIZE*0.1, IMSIZE*0.03, IMSIZE*0.03),
         (IMSIZE*0.16, IMSIZE*0.03, IMSIZE*0.02)][severity - 1]

    image = np.array(image, dtype=np.float32) / 255.
    shape = image.shape
    shape_size = shape[:2]

    # random affine
    center_square = np.float32(shape_size) // 2
    square_size = min(shape_size) // 3
    pts1 = np.float32([center_square + square_size,
                       [center_square[0] + square_size, center_square[1] - square_size],
                       center_square - square_size])
    pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32)
    M = cv2.getAffineTransform(pts1, pts2)
    image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)

    dx = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dy = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]

    x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
    indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
    return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255


# /////////////// End Distortions ///////////////


# /////////////// Further Setup /////////////// 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:39,代碼來源:make_tinyimagenet_c.py

示例13: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, severity=1):
    c = [(360 * 2, 360 * 0.7, 360 * 0.1),
         (360 * 2, 360 * 0.08, 360 * 0.2),
         (360 * 0.05, 360 * 0.01, 360 * 0.02),
         (360 * 0.07, 360 * 0.01, 360 * 0.02),
         (360 * 0.12, 360 * 0.01, 360 * 0.02)][severity - 1]

    image = np.array(image, dtype=np.float32) / 255.
    shape = image.shape
    shape_size = shape[:2]

    # random affine
    center_square = np.float32(shape_size) // 2
    square_size = min(shape_size) // 3
    pts1 = np.float32([center_square + square_size,
                       [center_square[0] + square_size, center_square[1] - square_size],
                       center_square - square_size])
    pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32)
    M = cv2.getAffineTransform(pts1, pts2)
    image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)

    dx = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dy = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
                   c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
    dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]

    x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
    indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
    return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255


# /////////////// End Distortions ///////////////


# /////////////// Further Setup /////////////// 
開發者ID:hendrycks,項目名稱:robustness,代碼行數:38,代碼來源:make_imagenet_c_inception.py

示例14: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(x: np.ndarray, amplitude: float, axes: AxesLike = None, order: int = 1):
    """Apply a gaussian elastic distortion with a given amplitude to a tensor along the given axes."""
    axes = expand_axes(axes, x.shape)
    grid_shape = extract(x.shape, axes)
    deltas = [gaussian_filter(np.random.uniform(-amplitude, amplitude, grid_shape), 1) for _ in grid_shape]
    grid = np.mgrid[tuple(map(slice, grid_shape))] + deltas

    return apply_along_axes(partial(map_coordinates, coordinates=grid, order=order), x, axes) 
開發者ID:neuro-ml,項目名稱:deep_pipe,代碼行數:10,代碼來源:augmentation.py

示例15: elastic_transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import map_coordinates [as 別名]
def elastic_transform(image, alpha, sigma):
        shape = image.shape
        dx = gaussian_filter((np.random.rand(*shape) * 2 - 1),
                             sigma, mode="constant", cval=0) * alpha
        dy = gaussian_filter((np.random.rand(*shape) * 2 - 1),
                             sigma, mode="constant", cval=0) * alpha

        x, y = np.meshgrid(np.arange(shape[0]),
                           np.arange(shape[1]), indexing='ij')
        indices = np.reshape(x+dx, (-1, 1)), np.reshape(y+dy, (-1, 1))
        return map_coordinates(image, indices, order=1).reshape(shape) 
開發者ID:perone,項目名稱:medicaltorch,代碼行數:13,代碼來源:transforms.py


注:本文中的scipy.ndimage.interpolation.map_coordinates方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。