當前位置: 首頁>>代碼示例>>Python>>正文


Python interpolation.affine_transform方法代碼示例

本文整理匯總了Python中scipy.ndimage.interpolation.affine_transform方法的典型用法代碼示例。如果您正苦於以下問題:Python interpolation.affine_transform方法的具體用法?Python interpolation.affine_transform怎麽用?Python interpolation.affine_transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.interpolation的用法示例。


在下文中一共展示了interpolation.affine_transform方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: random_rotation

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def random_rotation(volume, rotation):
    theta_x = np.pi / 180 * np.random.uniform(-rotation, rotation)
    theta_y = np.pi / 180 * np.random.uniform(-rotation, rotation)
    theta_z = np.pi / 180 * np.random.uniform(-rotation, rotation)
    rotation_matrix_x = np.array([[1, 0, 0],
                                  [0, np.cos(theta_x), -np.sin(theta_x)],
                                  [0, np.sin(theta_x), np.cos(theta_x)]])
    rotation_matrix_y = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
                                  [0, 1, 0],
                                  [-np.sin(theta_y), 0, np.cos(theta_y)]])
    rotation_matrix_z = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
                                  [np.sin(theta_z), np.cos(theta_z), 0],
                                  [0, 0, 1]])
    transform_matrix = np.dot(np.dot(rotation_matrix_x, rotation_matrix_y), rotation_matrix_z)
    volume_rotated = affine_transform(volume, transform_matrix, mode='nearest')
    return volume_rotated 
開發者ID:mdai,項目名稱:kaggle-lung-cancer,代碼行數:18,代碼來源:04_create_patches_cancer_pred_anno.py

示例2: transform

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def transform(self, translation, theta, method='opencv'):
        """Create a new image by translating and rotating the current image.

        Parameters
        ----------
        translation : :obj:`numpy.ndarray` of float
            The XY translation vector.
        theta : float
            Rotation angle in radians, with positive meaning counter-clockwise.
        method : :obj:`str`
            Method to use for image transformations (opencv or scipy)

        Returns
        -------
        :obj:`Image`
            An image of the same type that has been rotated and translated.
        """
        theta = np.rad2deg(theta)
        trans_map = np.float32(
            [[1, 0, translation[1]], [0, 1, translation[0]]])
        rot_map = cv2.getRotationMatrix2D(
            (self.center[1], self.center[0]), theta, 1)
        trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]
        rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]
        full_map = rot_map_aff.dot(trans_map_aff)
        full_map = full_map[:2, :]
        if method == 'opencv':
            im_data_tf = cv2.warpAffine(
                self.data, full_map, (self.width, self.height), flags=cv2.INTER_NEAREST)
        else:
            im_data_tf = sni.affine_transform(self.data,
                                              matrix=full_map[:, :2],
                                              offset=full_map[:, 2],
                                              order=0)
        return type(self)(
            im_data_tf.astype(
                self.data.dtype),
            frame=self._frame) 
開發者ID:BerkeleyAutomation,項目名稱:perception,代碼行數:40,代碼來源:image.py

示例3: scale_to_h

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def scale_to_h(img, target_height, order=1, dtype=np.dtype('f'), cval=0):
        h, w = img.shape
        scale = target_height * 1.0 / h
        target_width = np.maximum(int(scale * w), 1)
        output = interpolation.affine_transform(
            1.0 * img,
            np.eye(2) / scale,
            order=order,
            output_shape=(target_height,target_width),
            mode='constant',
            cval=cval)

        output = np.array(output, dtype=dtype)
        return output 
開發者ID:Calamari-OCR,項目名稱:calamari,代碼行數:16,代碼來源:scale_to_height_processor.py

示例4: scale_to_h

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def scale_to_h(img, target_height, order=1, dtype=np.dtype('f'), cval=0):
    h, w = img.shape
    scale = target_height*1.0/h
    target_width = int(scale*w)
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', UserWarning)
        output = interpolation.affine_transform(1.0*img, np.ones(2)/scale,
                                                order=order,
                                                output_shape=(target_height,
                                                              target_width),
                                                mode='constant', cval=cval)
    output = np.array(output, dtype=dtype)
    return output 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:15,代碼來源:lineest.py

示例5: rotate

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def rotate(v, angle=None, rm=None, c1=None, c2=None, loc_r=None, siz2=None, default_val=float('NaN')):
    if (angle is not None):
        assert (rm is None)
        angle = N.array(angle, dtype=N.float).flatten()
        rm = AA.rotation_matrix_zyz(angle)
    if (rm is None):
        rm = N.eye(v.ndim)
    siz1 = N.array(v.shape, dtype=N.float)
    if (c1 is None):
        c1 = ((siz1 - 1) / 2.0)
    else:
        c1 = c1.flatten()
    assert (c1.shape == (3,))
    if (siz2 is None):
        siz2 = siz1
    siz2 = N.array(siz2, dtype=N.float)
    if (c2 is None):
        c2 = ((siz2 - 1) / 2.0)
    else:
        c2 = c2.flatten()
    assert (c2.shape == (3,))
    if (loc_r is not None):
        loc_r = N.array(loc_r, dtype=N.float).flatten()
        assert (loc_r.shape == (3,))
        c2 += loc_r
    c = ((- rm.dot(c2)) + c1)
    vr = SNI.affine_transform(input=v, matrix=rm, offset=c, output_shape=siz2.astype(N.int), cval=default_val)
    return vr 
開發者ID:xulabs,項目名稱:aitom,代碼行數:30,代碼來源:rotate.py

示例6: resize_center

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def resize_center(v, s, cval=float('NaN')):
    vs = N.array(v.shape, dtype=N.float)

    from scipy.ndimage import interpolation
    v1 = interpolation.affine_transform(input=v, matrix=N.eye(v.ndim), offset=(vs-s)/2.0, output_shape=s, cval=cval )
    return v1


# given a dictionary of volumes, find the largest, then generate a new set of volumes of same size as the largest multiplied by a factor 
開發者ID:xulabs,項目名稱:aitom,代碼行數:11,代碼來源:util.py

示例7: augment

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def augment(images):
    pixels = images[0].shape[1]
    center = pixels/2.-0.5

    random_flip_x = P.AUGMENTATION_PARAMS['flip'] and np.random.randint(2) == 1
    random_flip_y = P.AUGMENTATION_PARAMS['flip'] and np.random.randint(2) == 1

    # Translation shift
    shift_x = np.random.uniform(*P.AUGMENTATION_PARAMS['translation_range'])
    shift_y = np.random.uniform(*P.AUGMENTATION_PARAMS['translation_range'])
    rotation_degrees = np.random.uniform(*P.AUGMENTATION_PARAMS['rotation_range'])
    zoom_factor = np.random.uniform(*P.AUGMENTATION_PARAMS['zoom_range'])
    #zoom_factor = 1 + (zoom_f/2-zoom_f*np.random.random())
    if CV2_AVAILABLE:
        M = cv2.getRotationMatrix2D((center, center), rotation_degrees, zoom_factor)
        M[0, 2] += shift_x
        M[1, 2] += shift_y

    for i in range(len(images)):
        image = images[i]

        if CV2_AVAILABLE:
            #image = image.transpose(1,2,0)
            image = cv2.warpAffine(image, M, (pixels, pixels))
            if random_flip_x:
                image = cv2.flip(image, 0)
            if random_flip_y:
                image = cv2.flip(image, 1)
            #image = image.transpose(2,0,1)
            images[i] = image
        else:
            if random_flip_x:
                #image = image.transpose(1,0)
                image[:,:] = image[::-1,:]
                #image = image.transpose(1,0)
            if random_flip_y:
                image = image.transpose(1,0)
                image[:,:] = image[::-1,:]
                image = image.transpose(1,0)

            rotate(image, rotation_degrees, reshape=False, output=image)
            #image2 = zoom(image, [zoom_factor,zoom_factor])
            image2 = crop_or_pad(image, pixels, -3000)
            shift(image2, [shift_x,shift_y], output=image)
            #affine_transform(image, np.array([[zoom_x,0], [0,zoom_x]]), output=image)
            #z = AffineTransform(scale=(2,2))
            #image = warp(image, z.params)
            images[i] = image



    return images 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:54,代碼來源:augment.py

示例8: distort_line

# 需要導入模塊: from scipy.ndimage import interpolation [as 別名]
# 或者: from scipy.ndimage.interpolation import affine_transform [as 別名]
def distort_line(im, distort=3.0, sigma=10, eps=0.03, delta=0.3):
    """
    Distorts a line image.

    Run BEFORE degrade_line as a white border of 5 pixels will be added.

    Args:
        im (PIL.Image): Input image
        distort (float):
        sigma (float):
        eps (float):
        delta (float):

    Returns:
        PIL.Image in mode 'L'
    """
    w, h = im.size
    # XXX: determine correct output shape from transformation matrices instead
    # of guesstimating.
    logger.debug('Pasting source image into canvas')
    image = Image.new('L', (int(1.5*w), 4*h), 255)
    image.paste(im, (int((image.size[0] - w) / 2), int((image.size[1] - h) / 2)))
    line = pil2array(image.convert('L'))

    # shear in y direction with factor eps * randn(), scaling with 1 + eps *
    # randn() in x/y axis (all offset at d)
    logger.debug('Performing affine transformation')
    m = np.array([[1 + eps * np.random.randn(), 0.0], [eps * np.random.randn(), 1.0 + eps * np.random.randn()]])
    c = np.array([w/2.0, h/2])
    d = c - np.dot(m, c) + np.array([np.random.randn() * delta, np.random.randn() * delta])
    line = affine_transform(line, m, offset=d, order=1, mode='constant', cval=255)

    hs = gaussian_filter(np.random.randn(4*h, int(1.5*w)), sigma)
    ws = gaussian_filter(np.random.randn(4*h, int(1.5*w)), sigma)
    hs *= distort/np.amax(hs)
    ws *= distort/np.amax(ws)

    def _f(p):
        return (p[0] + hs[p[0], p[1]], p[1] + ws[p[0], p[1]])

    logger.debug('Performing geometric transformation')
    im = array2pil(geometric_transform(line, _f, order=1, mode='nearest'))
    logger.debug('Cropping canvas to content box')
    im = im.crop(ImageOps.invert(im).getbbox())
    return im 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:47,代碼來源:linegen.py


注:本文中的scipy.ndimage.interpolation.affine_transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。