當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.imread方法代碼示例

本文整理匯總了Python中scipy.ndimage.imread方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.imread方法的具體用法?Python ndimage.imread怎麽用?Python ndimage.imread使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.imread方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: convert_image

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def convert_image(self, filename):
        pic = img.imread(filename)
        # Set FFT size to be double the image size so that the edge of the spectrum stays clear
        # preventing some bandfilter artifacts
        self.NFFT = 2*pic.shape[1]

        # Repeat image lines until each one comes often enough to reach the desired line time
        ffts = (np.flipud(np.repeat(pic[:, :, 0], self.repetitions, axis=0) / 16.)**2.) / 256.

        # Embed image in center bins of the FFT
        fftall = np.zeros((ffts.shape[0], self.NFFT))
        startbin = int(self.NFFT/4)
        fftall[:, startbin:(startbin+pic.shape[1])] = ffts

        # Generate random phase vectors for the FFT bins, this is important to prevent high peaks in the output
        # The phases won't be visible in the spectrum
        phases = 2*np.pi*np.random.rand(*fftall.shape)
        rffts = fftall * np.exp(1j*phases)

        # Perform the FFT per image line, then concatenate them to form the final signal
        timedata = np.fft.ifft(np.fft.ifftshift(rffts, axes=1), axis=1) / np.sqrt(float(self.NFFT))
        linear = timedata.flatten()
        linear = linear / np.max(np.abs(linear))
        return linear 
開發者ID:polygon,項目名稱:spectrum_painter,代碼行數:26,代碼來源:spectrum_painter.py

示例2: encoder

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def encoder(in_queue, threshold, generated_masks, time_counts):
    while True:
        img_name, mask_img_path = in_queue.get()

        if img_name is None:
            break

        t0 = time.clock()
        mask_img = ndimage.imread(mask_img_path, mode='L')
        mask_img[mask_img <= threshold] = 0
        mask_img[mask_img > threshold] = 1
        time_counts['time_read'].append(time.clock() - t0)

        t0 = time.clock()
        rle = rle_encode(mask_img)
        time_counts['time_rle'].append(time.clock() - t0)

        t0 = time.clock()
        rle_string = rle_to_string(rle)
        time_counts['time_stringify'].append(time.clock() - t0)

        generated_masks.append((img_name, rle_string)) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:24,代碼來源:generate_encoded_submission.py

示例3: crawl_directory

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def crawl_directory(directory, augment_with_rotations=False, first_label=0):
  """Crawls data directory and returns stuff."""
  label_idx = first_label
  images = []
  labels = []
  info = []

  # traverse root directory
  for root, _, files in os.walk(directory):
    logging.info('Reading files from %s', root)

    for file_name in files:
      full_file_name = os.path.join(root, file_name)
      img = imread(full_file_name, flatten=True)
      for idx, angle in enumerate([0, 90, 180, 270]):
        if not augment_with_rotations and idx > 0:
          break

        images.append(imrotate(img, angle))
        labels.append(label_idx + idx)
        info.append(full_file_name)

    if len(files) == 20:
      label_idx += 4 if augment_with_rotations else 1
  return images, labels, info 
開發者ID:RUSH-LAB,項目名稱:LSH_Memory,代碼行數:27,代碼來源:data_utils.py

示例4: load_images

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def load_images(img_dims):
    """Load all images into a dictionary with filename as the key and numpy image array as the value."""
    image_list = {}
    for root, dirnames, filenames in os.walk(config.path_img):
        for filename in filenames:
            if re.search("\.(jpg|jpeg|png|bmp|tiff)$", filename):
                filepath = os.path.join(root, filename)
                try:
                    image = ndimage.imread(filepath, mode="RGB")
                except OSError:
                    print('Could not load image {}'.format(filepath))
                image_resized = misc.imresize(image, img_dims)
                if np.random.random() > 0.5:
                    # Flip horizontally with probability 50%
                    image_resized = np.fliplr(image_resized)
                image_list[filename.split('.')[0]] = image_resized
    print('Loaded {:,} images from disk'.format(len(image_list)))
    return image_list 
開發者ID:rtlee9,項目名稱:recipe-summarization,代碼行數:20,代碼來源:prep_data.py

示例5: test_imread

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def test_imread():
    lp = os.path.join(os.path.dirname(__file__), 'dots.png')
    with suppress_warnings() as sup:
        # PIL causes a Py3k ResourceWarning
        sup.filter(message="unclosed file")
        sup.filter(DeprecationWarning)
        img = ndi.imread(lp, mode="RGB")
    assert_array_equal(img.shape, (300, 420, 3))

    with suppress_warnings() as sup:
        # PIL causes a Py3k ResourceWarning
        sup.filter(message="unclosed file")
        sup.filter(DeprecationWarning)
        img = ndi.imread(lp, flatten=True)
    assert_array_equal(img.shape, (300, 420))

    with open(lp, 'rb') as fobj:
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning)
            img = ndi.imread(fobj, mode="RGB")
        assert_array_equal(img.shape, (300, 420, 3)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:test_io.py

示例6: load_images_from_jpg

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def load_images_from_jpg(subset="train", downsample_factor=None, normalise=True, from_ram=False):
    if from_ram:
        pattern = "/dev/shm/images_%s_rev1/*.jpg"
    else:
        pattern = "data/raw/images_%s_rev1/*.jpg"
    paths = glob.glob(pattern % subset)
    paths.sort() # alphabetic ordering is used everywhere.
    for path in paths:
        # img = ndimage.imread(path)
        img = skimage.io.imread(path)
        if normalise:
            img = img.astype('float32') / 255.0 # normalise and convert to float

        if downsample_factor is None:
            yield img
        else:
            yield img[::downsample_factor, ::downsample_factor] 
開發者ID:benanne,項目名稱:kaggle-galaxies,代碼行數:19,代碼來源:load_data.py

示例7: __getitem__

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def __getitem__(self, idx):
    if self.train:
      img_path, gt_path = self.train_set_path[idx]

      img = imread(img_path)
      img = img[0:self.nRow, 0:self.nCol]
      img = np.atleast_3d(img).transpose(2, 0, 1).astype(np.float32)
      img = (img - img.min()) / (img.max() - img.min())
      img = torch.from_numpy(img).float()

      gt = imread(gt_path)[0:self.nRow, 0:self.nCol]
      gt = np.atleast_3d(gt).transpose(2, 0, 1)
      gt = gt / 255.0
      gt = torch.from_numpy(gt).float()

      return img, gt 
開發者ID:jakeoung,項目名稱:Unet_pytorch,代碼行數:18,代碼來源:dataset.py

示例8: read_image

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def read_image(path, max_intensity):
    image = nd.imread(path, mode="L")
    image = np.asarray(image, dtype=np.float32) / 255.0
    img_min, img_max = image.min(), image.max()

    if img_min != img_max:
        if img_min > 0.0:
            image -= img_min
        if img_max > 0.0:
            image /= img_max
        if max_intensity < 1.0:
            image *= max_intensity
    else:
        if img_max > max_intensity:
            image = np.ones_like(image) * max_intensity

    return image 
開發者ID:aakhundov,項目名稱:tf-attend-infer-repeat,代碼行數:19,代碼來源:multi_mnist.py

示例9: LoadImgAsPoints

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def LoadImgAsPoints(self, fn):
        if(fn in self.image_points_cache):
            return self.image_points_cache[fn]

        I = imread(fn, flatten=True)
        I = np.asarray(imresize(I, size=self.image_size), dtype=np.float32)
        I[I<255] = 0
        I = np.array(I, dtype=bool)
        I = np.logical_not(I)
        (row, col) = I.nonzero()
        D = np.array([row, col])
        D = np.transpose(D)
        D = D.astype(float)
        n = D.shape[0]
        mean = np.mean(D, axis=0)
        for i in range(n):
            D[i, :] = D[i, :] - mean

        self.image_points_cache[fn] = D
        return D 
開發者ID:antonpuz,項目名稱:DeROL,代碼行數:22,代碼來源:OMNIGLOTClassifier.py

示例10: omniglot_folder_to_NDarray

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def omniglot_folder_to_NDarray(path_im):
    alphbts = os.listdir(path_im)
    ALL_IMGS = []

    for alphbt in alphbts:
        chars = os.listdir(os.path.join(path_im, alphbt))
        for char in chars:
            img_filenames = os.listdir(os.path.join(path_im, alphbt, char))
            char_imgs = []
            for img_fn in img_filenames:
                fn = os.path.join(path_im, alphbt, char, img_fn)
                I = imread(fn)
                I = np.invert(I)
                char_imgs.append(I)
            ALL_IMGS.append(char_imgs)

    return np.array(ALL_IMGS) 
開發者ID:sanyam5,項目名稱:arc-pytorch,代碼行數:19,代碼來源:download_data.py

示例11: save

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def save(fp, image, quality=75):
    image_jpg = compress_to_jpg(image, quality=quality)
    image_jpg_decompressed = decompress_jpg(image_jpg)

    # If the image file already exists and is (practically) identical,
    # then don't save it again to avoid polluting the repository with tons
    # of image updates.
    # Not that we have to compare here the results AFTER jpg compression
    # and then decompression. Otherwise we compare two images of which
    # image (1) has never been compressed while image (2) was compressed and
    # then decompressed.
    if os.path.isfile(fp):
        image_saved = ndimage.imread(fp, mode="RGB")
        #print("arrdiff", arrdiff(image_jpg_decompressed, image_saved))
        same_shape = (image_jpg_decompressed.shape == image_saved.shape)
        d_avg = arrdiff(image_jpg_decompressed, image_saved) if same_shape else -1
        if same_shape and d_avg <= 1.0:
            print("[INFO] Did not save image '%s', because the already saved image is basically identical (d_avg=%.8f)" % (fp, d_avg,))
            return
        else:
            print("[INFO] Saving image '%s'..." % (fp,))

    with open(fp, "w") as f:
        f.write(image_jpg) 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:26,代碼來源:generate_example_images.py

示例12: quokka

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def quokka(size=None):
    """
    Returns an image of a quokka as a numpy array.

    Parameters
    ----------
    size : None or float or tuple of two ints, optional(default=None)
        Size of the output image. Input into scipy.misc.imresize.
        Usually expected to be a tuple (H, W), where H is the desired height
        and W is the width. If None, then the image will not be resized.

    Returns
    -------
    img : (H,W,3) ndarray
        The image array of dtype uint8.

    """
    img = ndimage.imread(QUOKKA_FP, mode="RGB")
    if size is not None:
        img = misc.imresize(img, size)
    return img 
開發者ID:JoshuaPiinRueyPan,項目名稱:ViolenceDetection,代碼行數:23,代碼來源:imgaug.py

示例13: eval_sequence

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def eval_sequence(gt_folder, recog_folder):
  seq = gt_folder.split("/")[-7] + "_" + gt_folder.split("/")[-5]
  gt_files = sorted(glob.glob(gt_folder + "/*.jpg"))

  #checks
  #if not gt_files[0].endswith("00001.jpg"):
  #  print "does not start with 00001.jpg!", gt_files[0]
  #indices = [int(f.split("/")[-1][:-4]) for f in gt_files]
  #if not (numpy.diff(indices) == 10).all():
  #  print "no spacing of 10:", gt_files

  gt_files = gt_files[1:]
  recog_folder_seq = recog_folder + seq + "/"
  print(recog_folder_seq, end=' ')
  recog_files = [gt_file.replace(gt_folder, recog_folder_seq).replace(".jpg", ".png") for gt_file in gt_files]

  ious = []
  for gt_file, recog_file in zip(gt_files, recog_files):
    gt = imread(gt_file) / 255
    recog = imread(recog_file) / 255
    iou = compute_iou_for_binary_segmentation(recog, gt)
    ious.append(iou)
  return numpy.mean(ious) 
開發者ID:JonathonLuiten,項目名稱:PReMVOS,代碼行數:25,代碼來源:eval_youtube_nonfull.py

示例14: eval_sequence

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def eval_sequence(gt_folder, recog_folder):
  seq = gt_folder.split("/")[-7] + "_" + gt_folder.split("/")[-5]
  gt_files = sorted(glob.glob(gt_folder + "/*.jpg"))

  gt_files = gt_files[1:]
  recog_folder_seq = recog_folder + seq + "/"
  
  #for full dataset
  recog_files = []
  for gt_file in gt_files:
    idx = int(gt_file.split("/")[-1].replace(".jpg", ""))
    ending = "frame%04d.png" % idx
    recog_file = recog_folder_seq + ending
    recog_files.append(recog_file)

  ious = []
  for gt_file, recog_file in zip(gt_files, recog_files):
    gt = imread(gt_file) / 255
    recog = imread(recog_file) / 255
    iou = compute_iou_for_binary_segmentation(recog, gt)
    ious.append(iou)
  return numpy.mean(ious) 
開發者ID:JonathonLuiten,項目名稱:PReMVOS,代碼行數:24,代碼來源:eval_youtube.py

示例15: run_multiclass_crf

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import imread [as 別名]
def run_multiclass_crf(seq, fn, posteriors, softmax_scale, sxy1, compat1, sxy2, compat2, srgb):
  im_fn = DAVIS2017_DIR + "JPEGImages/480p/" + seq + "/" + fn.replace(".pickle", ".jpg")
  im = imread(im_fn)
  nlabels = posteriors.shape[-1]

  im = numpy.ascontiguousarray(im)
  pred = numpy.ascontiguousarray(posteriors.swapaxes(0, 2).swapaxes(1, 2))

  d = dcrf.DenseCRF2D(im.shape[1], im.shape[0], nlabels)  # width, height, nlabels
  unaries = unary_from_softmax(pred, scale=softmax_scale)
  d.setUnaryEnergy(unaries)

  d.addPairwiseGaussian(sxy=sxy1, compat=compat1)
  d.addPairwiseBilateral(sxy=sxy2, srgb=srgb, rgbim=im, compat=compat2)
  processed = d.inference(12)
  res = numpy.argmax(processed, axis=0).reshape(im.shape[:2])
  return res 
開發者ID:JonathonLuiten,項目名稱:PReMVOS,代碼行數:19,代碼來源:combine_single_object_predictions_crf.py


注:本文中的scipy.ndimage.imread方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。