本文整理匯總了Python中scipy.ndimage.histogram方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.histogram方法的具體用法?Python ndimage.histogram怎麽用?Python ndimage.histogram使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage
的用法示例。
在下文中一共展示了ndimage.histogram方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: labelmeanfilter_nd
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def labelmeanfilter_nd(y, x):
# requires integer labels
# from mailing list scipy-user 2009-02-11
# adjusted for 2d x with column variables
labelsunique = np.arange(np.max(y)+1)
labmeansdata = []
labmeans = []
for xx in x.T:
labelmeans = np.array(ndimage.mean(xx, labels=y, index=labelsunique))
labmeansdata.append(labelmeans[y])
labmeans.append(labelmeans)
# group count:
labelcount = np.array(ndimage.histogram(y, labelsunique[0], labelsunique[-1]+1,
1, labels=y, index=labelsunique))
# returns array of lable/group counts and of label/group means
# and label/group means for each original observation
return labelcount, np.array(labmeans), np.array(labmeansdata).T
示例2: entropy2
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def entropy2(x, y):
'''Joint entropy of paired samples X and Y'''
#
# Bin each image into 256 gray levels
#
x = (stretch(x) * 255).astype(int)
y = (stretch(y) * 255).astype(int)
#
# create an image where each pixel with the same X & Y gets
# the same value
#
xy = 256 * x + y
xy = xy.flatten()
sparse = scipy.sparse.coo_matrix((np.ones(xy.shape),
(xy, np.zeros(xy.shape))))
histogram = sparse.toarray()
n = np.sum(histogram)
if n > 0 and np.max(histogram) > 0:
histogram = histogram[histogram > 0]
return np.log2(n) - old_div(np.sum(histogram * np.log2(histogram)), n)
else:
return 0
示例3: labelmeanfilter
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def labelmeanfilter(y, x):
# requires integer labels
# from mailing list scipy-user 2009-02-11
labelsunique = np.arange(np.max(y)+1)
labelmeans = np.array(ndimage.mean(x, labels=y, index=labelsunique))
# returns label means for each original observation
return labelmeans[y]
#groupcount: i.e. number of observation by group/label
#np.array(ndimage.histogram(yrvs[:,0],0,10,1,labels=yrvs[:,0],index=np.unique(yrvs[:,0])))
示例4: test_histogram01
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def test_histogram01():
"histogram 1"
expected = np.ones(10)
input = np.arange(10)
output = ndimage.histogram(input, 0, 10, 10)
assert_array_almost_equal(output, expected)
示例5: test_histogram02
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def test_histogram02():
"histogram 2"
labels = [1, 1, 1, 1, 2, 2, 2, 2]
expected = [0, 2, 0, 1, 1]
input = np.array([1, 1, 3, 4, 3, 3, 3, 3])
output = ndimage.histogram(input, 0, 4, 5, labels, 1)
assert_array_almost_equal(output, expected)
示例6: test_histogram03
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def test_histogram03():
"histogram 3"
labels = [1, 0, 1, 1, 2, 2, 2, 2]
expected1 = [0, 1, 0, 1, 1]
expected2 = [0, 0, 0, 3, 0]
input = np.array([1, 1, 3, 4, 3, 5, 3, 3])
output = ndimage.histogram(input, 0, 4, 5, labels, (1,2))
assert_array_almost_equal(output[0], expected1)
assert_array_almost_equal(output[1], expected2)
示例7: test_histogram01
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def test_histogram01():
expected = np.ones(10)
input = np.arange(10)
output = ndimage.histogram(input, 0, 10, 10)
assert_array_almost_equal(output, expected)
示例8: test_histogram02
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def test_histogram02():
labels = [1, 1, 1, 1, 2, 2, 2, 2]
expected = [0, 2, 0, 1, 1]
input = np.array([1, 1, 3, 4, 3, 3, 3, 3])
output = ndimage.histogram(input, 0, 4, 5, labels, 1)
assert_array_almost_equal(output, expected)
示例9: test_histogram03
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def test_histogram03():
labels = [1, 0, 1, 1, 2, 2, 2, 2]
expected1 = [0, 1, 0, 1, 1]
expected2 = [0, 0, 0, 3, 0]
input = np.array([1, 1, 3, 4, 3, 5, 3, 3])
output = ndimage.histogram(input, 0, 4, 5, labels, (1,2))
assert_array_almost_equal(output[0], expected1)
assert_array_almost_equal(output[1], expected2)
示例10: test_histogram
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def test_histogram(shape, chunks, has_lbls, ind, min, max, bins):
a = np.random.random(shape)
d = da.from_array(a, chunks=chunks)
lbls = None
d_lbls = None
if has_lbls:
lbls = np.zeros(a.shape, dtype=np.int64)
lbls += (
(a < 0.5).astype(lbls.dtype) +
(a < 0.25).astype(lbls.dtype) +
(a < 0.125).astype(lbls.dtype) +
(a < 0.0625).astype(lbls.dtype)
)
d_lbls = da.from_array(lbls, chunks=d.chunks)
a_r = spnd.histogram(a, min, max, bins, lbls, ind)
d_r = dask_image.ndmeasure.histogram(d, min, max, bins, d_lbls, ind)
if ind is None or np.isscalar(ind):
if a_r is None:
assert d_r.compute() is None
else:
np.allclose(a_r, d_r.compute(), equal_nan=True)
else:
assert a_r.dtype == d_r.dtype
assert a_r.shape == d_r.shape
for i in it.product(*[range(_) for _ in a_r.shape]):
if a_r[i] is None:
assert d_r[i].compute() is None
else:
assert np.allclose(a_r[i], d_r[i].compute(), equal_nan=True)
示例11: entropy
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import histogram [as 別名]
def entropy(x):
'''The entropy of x as if x is a probability distribution'''
histogram = scind.histogram(x.astype(float), np.min(x), np.max(x), 256)
n = np.sum(histogram)
if n > 0 and np.max(histogram) > 0:
histogram = histogram[histogram != 0]
return np.log2(n) - old_div(np.sum(histogram * np.log2(histogram)), n)
else:
return 0