當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.generic_filter方法代碼示例

本文整理匯總了Python中scipy.ndimage.generic_filter方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.generic_filter方法的具體用法?Python ndimage.generic_filter怎麽用?Python ndimage.generic_filter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.generic_filter方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_generic_filter01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def test_generic_filter01(self):
        filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
        footprint = numpy.array([[1, 0], [0, 1]])
        cf = numpy.array([1., 4.])

        def _filter_func(buffer, weights, total=1.0):
            weights = cf / total
            return (buffer * weights).sum()
        for type in self.types:
            a = numpy.arange(12, dtype=type)
            a.shape = (3,4)
            r1 = ndimage.correlate(a, filter_ * footprint)
            if type in self.float_types:
                r1 /= 5
            else:
                r1 //= 5
            r2 = ndimage.generic_filter(a, _filter_func,
                            footprint=footprint, extra_arguments=(cf,),
                            extra_keywords={'total': cf.sum()})
            assert_array_almost_equal(r1, r2) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:22,代碼來源:test_ndimage.py

示例2: test_valid_origins

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def test_valid_origins():
    """Regression test for #1311."""
    func = lambda x: np.mean(x)
    data = np.array([1,2,3,4,5], dtype=np.float64)
    assert_raises(ValueError, sndi.generic_filter, data, func, size=3,
                  origin=2)
    func2 = lambda x, y: np.mean(x + y)
    assert_raises(ValueError, sndi.generic_filter1d, data, func,
                  filter_size=3, origin=2)
    assert_raises(ValueError, sndi.percentile_filter, data, 0.2, size=3,
                  origin=2)

    for filter in [sndi.uniform_filter, sndi.minimum_filter,
                   sndi.maximum_filter, sndi.maximum_filter1d,
                   sndi.median_filter, sndi.minimum_filter1d]:
        # This should work, since for size == 3, the valid range for origin is
        # -1 to 1.
        list(filter(data, 3, origin=-1))
        list(filter(data, 3, origin=1))
        # Just check this raises an error instead of silently accepting or
        # segfaulting.
        assert_raises(ValueError, filter, data, 3, origin=2) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:24,代碼來源:test_filters.py

示例3: test_generic_filter01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def test_generic_filter01(self):
        filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
        footprint = numpy.array([[1, 0], [0, 1]])
        cf = numpy.array([1., 4.])

        def _filter_func(buffer, weights, total=1.0):
            weights = cf / total
            return (buffer * weights).sum()
        for type_ in self.types:
            a = numpy.arange(12, dtype=type_)
            a.shape = (3, 4)
            r1 = ndimage.correlate(a, filter_ * footprint)
            if type_ in self.float_types:
                r1 /= 5
            else:
                r1 //= 5
            r2 = ndimage.generic_filter(
                a, _filter_func, footprint=footprint, extra_arguments=(cf,),
                extra_keywords={'total': cf.sum()})
            assert_array_almost_equal(r1, r2) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_ndimage.py

示例4: test_generic_filter

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def test_generic_filter():
    def filter2d(footprint_elements, weights):
        return (weights*footprint_elements).sum()

    def check(j):
        func = FILTER2D_FUNCTIONS[j]

        im = np.ones((20, 20))
        im[:10,:10] = 0
        footprint = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
        footprint_size = np.count_nonzero(footprint)
        weights = np.ones(footprint_size)/footprint_size

        res = ndimage.generic_filter(im, func(weights),
                                     footprint=footprint)
        std = ndimage.generic_filter(im, filter2d, footprint=footprint,
                                     extra_arguments=(weights,))
        assert_allclose(res, std, err_msg="#{} failed".format(j))

    for j, func in enumerate(FILTER2D_FUNCTIONS):
        check(j) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:test_c_api.py

示例5: interpolate_endmember_spectra

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def interpolate_endmember_spectra(em_map, window, cval=0, nodata=-9999):
    '''
    Spatially interpolates a single-band image using the given window; not
    intended for direct use, rather, it is a module-level function for use
    in a ProcessPoolExecutor's context as part of interpolate_endmember_map().
    Arguments:
        em_map  A single-band raster array with most, but not all, pixels
                masked; these are interpolated from the values of the
                unmasked pixels.
        window  A square array representing a moving window.
        cval    The constant value to use outside of the em_map array;
                should be set to zero for proper interpolation of endmember
                spectra.
    '''
    shp = em_map.shape
    w = np.max(window.shape) # Assume square window; longest of any equal side
    window = np.ravel(window) # For performance, used raveled arrays
    em_avg_map = generic_filter(
        # Fill NoData with zero --> no contribution to spatial sum
        np.where(em_map[0,...] == nodata, cval, em_map[0,...]),
            # Multiply em_map in window by weights, then divide by
            #   the sum of weights in those non-zero areas
            lambda x: np.sum(np.multiply(x, window)) / np.sum(
                np.multiply(np.where(x == cval, 0, 1), window)),
            mode = 'constant', cval = cval, footprint = np.ones((w,w)))
    return em_avg_map.reshape((1, shp[1], shp[2])) 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:28,代碼來源:sasma.py

示例6: solve

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def solve(Z, start, goal):
    Z = 1 - Z
    G = np.zeros(Z.shape)
    G[start] = 1

    # We iterate until value at exit is > 0. This requires the maze
    # to have a solution or it will be stuck in the loop.
    def diffuse(Z, gamma=0.99):
        return max(gamma*Z[0], gamma*Z[1], Z[2], gamma*Z[3], gamma*Z[4])

    G_gamma = np.empty_like(G)
    while G[goal] == 0.0:
        G = Z * generic_filter(G, diffuse, footprint=[[0, 1, 0],
                                                      [1, 1, 1],
                                                      [0, 1, 0]])
    
    # Descent gradient to find shortest path from entrance to exit
    y, x = goal
    dirs = (0,-1), (0,+1), (-1,0), (+1,0)
    P = []
    while (x, y) != start:
        P.append((y,x))
        neighbours = [-1, -1, -1, -1]
        if x > 0:            neighbours[0] = G[y, x-1]
        if x < G.shape[1]-1: neighbours[1] = G[y, x+1]
        if y > 0:            neighbours[2] = G[y-1, x]
        if y < G.shape[0]-1: neighbours[3] = G[y+1, x]
        a = np.argmax(neighbours)
        x, y  = x + dirs[a][1], y + dirs[a][0]
    P.append((y,x))
    return P 
開發者ID:rougier,項目名稱:ML-Recipes,代碼行數:33,代碼來源:value-iteration.py

示例7: test_ticket_701

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def test_ticket_701():
    # Test generic filter sizes
    arr = np.arange(4).reshape((2,2))
    func = lambda x: np.min(x)
    res = sndi.generic_filter(arr, func, size=(1,1))
    # The following raises an error unless ticket 701 is fixed
    res2 = sndi.generic_filter(arr, func, size=1)
    assert_equal(res, res2) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:10,代碼來源:test_filters.py

示例8: _neighbor_count

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def _neighbor_count(self, board, who):
        footprint = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]])
        return ndimage.generic_filter(board, lambda r: np.count_nonzero(r == who), footprint=footprint, mode='constant') 
開發者ID:splendor-kill,項目名稱:ml-five,代碼行數:5,代碼來源:dnn.py

示例9: relative_darkness

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def relative_darkness(im, window_size=5, threshold=10):
	if im.ndim == 3:
		im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

	# find number of pixels at least $threshold less than the center value
	def below_thresh(vals):
		center_val = vals[vals.shape[0]/2]
		lower_thresh = center_val - threshold
		return (vals < lower_thresh).sum()

	# find number of pixels at least $threshold greater than the center value
	def above_thresh(vals):
		center_val = vals[vals.shape[0]/2]
		above_thresh = center_val + threshold
		return (vals > above_thresh).sum()
		
	# apply the above function convolutionally
	lower = nd.generic_filter(im, below_thresh, size=window_size, mode='reflect')
	upper = nd.generic_filter(im, above_thresh, size=window_size, mode='reflect')

	# number of values within $threshold of the center value is the remainder
	# constraint: lower + middle + upper = window_size ** 2
	middle = np.empty_like(lower)
	middle.fill(window_size*window_size)
	middle = middle - (lower + upper)

	# scale to range [0-255]
	lower = lower * (255 / (window_size * window_size))
	middle = middle * (255 / (window_size * window_size))
	upper = upper * (255 / (window_size * window_size))

	return np.concatenate( [lower[:,:,np.newaxis], middle[:,:,np.newaxis], upper[:,:,np.newaxis]], axis=2) 
開發者ID:ctensmeyer,項目名稱:binarization_2017,代碼行數:34,代碼來源:binarize_dibco.py

示例10: get_geom_feats

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import generic_filter [as 別名]
def get_geom_feats(config, array, before_class, input):

    """
    Add extra bands to the array for:
	# 1. Max magnitude in X pixel window
	# 2. Min magnitude in X pixel window
	# 3. Mean magnitude in X pixel window
	# 4+ TODO: area, shape, etc? 
    """

    mag_band = config['general']['mag_band'] - 1
    mag = array[mag_band,:,:]

    forestlabel = int(config['classification']['forestlabel'])

    # create window
    before_class = before_class.astype(np.float)
    before_class[before_class == forestlabel] = np.nan
    before_class[before_class == 0] = np.nan

    window = config['postprocessing']['deg_class']['window_size']
 
    max_mag = ndimage.generic_filter(before_class, np.nanmax, size=window)

    max_mag[np.isnan(max_mag)] = 0

    save_raster_simple(max_mag, input, 'test_classwindow.tif')

    dim1, dim2, dim3 = np.shape(array)

    newar = np.zeros((dim1+3,dim2,dim3))

    newar[0:dim1,:,:] = array

    newar[-3,:,:] = max_mag

    newar[-2,:,:] = min_mag

    newar[-1,:,:] = mean_mag

    newar[-3,:,:][newar[0, :, :] == 0] = 0
    newar[-2,:,:][newar[0, :, :] == 0] = 0
    newar[-1,:,:][newar[0, :, :] == 0] = 0

    return newar 
開發者ID:bullocke,項目名稱:coded,代碼行數:47,代碼來源:postprocess_utils.py


注:本文中的scipy.ndimage.generic_filter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。