當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.gaussian_filter1d方法代碼示例

本文整理匯總了Python中scipy.ndimage.gaussian_filter1d方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.gaussian_filter1d方法的具體用法?Python ndimage.gaussian_filter1d怎麽用?Python ndimage.gaussian_filter1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.gaussian_filter1d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: openpose2motion

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def openpose2motion(json_dir, scale=1.0, smooth=True, max_frame=None):
    json_files = sorted(os.listdir(json_dir))
    length = max_frame if max_frame is not None else len(json_files) // 8 * 8
    json_files = json_files[:length]
    json_files = [os.path.join(json_dir, x) for x in json_files]

    motion = []
    for path in json_files:
        with open(path) as f:
            jointDict = json.load(f)
            joint = np.array(jointDict['people'][0]['pose_keypoints_2d']).reshape((-1, 3))[:15, :2]
            if len(motion) > 0:
                joint[np.where(joint == 0)] = motion[-1][np.where(joint == 0)]
            motion.append(joint)

    for i in range(len(motion) - 1, 0, -1):
        motion[i - 1][np.where(motion[i - 1] == 0)] = motion[i][np.where(motion[i - 1] == 0)]

    motion = np.stack(motion, axis=2)
    if smooth:
        motion = gaussian_filter1d(motion, sigma=2, axis=-1)
    motion = motion * scale
    return motion 
開發者ID:ChrisWu1997,項目名稱:2D-Motion-Retargeting,代碼行數:25,代碼來源:motion.py

示例2: find_jumps

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def find_jumps(self,ds, threshold = 40000):
        self._prepare_find_jumps()
        ds = self._hf[ds]
        ds = gaussian_filter1d(ds,2)
        offset=ds[0]
        jpnh = 0
        for i in xrange(ds.shape[0]-3):
            #i +=3
            #df=(((ds[i+1]+ds[i+2]+ds[i+3])/3.)-ds[i])
            #df=(ds[i] - ((ds[i-1]+ds[i-2]+ds[i-3])/3.))
            df=((ds[i+1])-ds[i])
            if (abs(df)>threshold):
                self.qps_jpn_nr.append(1.)
                offset = offset-df
                jpnh = df
                #print df, offset
                self.qps_jpn_hight.append(abs(float(jpnh)))
                
                self.qps_jpn_spec.append(float(ds[i]+offset))
                jpnh = df
            
            else:
                self.qps_jpn_nr.append(0.)
                #self.qps_jpn_hight.append(float(jpnh))
                self.qps_jpn_spec.append(float(ds[i]+offset)) 
開發者ID:qkitgroup,項目名稱:qkit,代碼行數:27,代碼來源:qps_rings.py

示例3: find_jumps2

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def find_jumps2(self,ds,threshold=30000):
        self._prepare_find_jumps()
        ds = self._hf[ds]
        offset=ds[0]
        # first we remove a bit of noise
        #flt = gaussian_filter1d(ds,10)
        flt = median_filter(ds,size=10)
        #flt = ds
        # the sobel filter finds the "jumps" 
        sb=sobel(flt)
        for i in sb:
            self.qps_jpn_hight.append(float(i))
            
        for i in flt: self.qps_jpn_spec.append(float(i))
        """    
        for i in xrange(flt.shape[0]-1):
            if(abs(sb[i])>threshold):
                offset -= sb[i]
                
                self.qps_jpn_spec.append(float(flt[i]-offset))
            else:
                self.qps_jpn_spec.append(float(flt[i]-offset))
        """       

        #for i in sb 
開發者ID:qkitgroup,項目名稱:qkit,代碼行數:27,代碼來源:qps_rings.py

示例4: set_prefilter

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def set_prefilter(self,gaussian = False, median = False, params = []):
        self._do_prefilter_data = False
        if gaussian or median:
            self._do_prefilter_data = True

        #print gaussian, median
        if median:
            self._prefilter = median_filter
            #print("median_filter")
            if params:
                self._prefilter_params = params[0]
            else:
                self._prefilter_params = 6

        if gaussian:
            self._prefilter = gaussian_filter1d
            #print("gaussian_filter1d")
            if params:
                self._prefilter_params = params[0]
            else:
                self._prefilter_params = 6 # 0.4 
開發者ID:qkitgroup,項目名稱:qkit,代碼行數:23,代碼來源:resonator.py

示例5: _compute_hist

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def _compute_hist (data, x_scale="linear", smooth_sigma=2, nbins=200):

        # Count each categories in log or linear space
        min = np.nanmin(data)
        max = np.nanmax(data)

        if x_scale == "log":
            count_y, bins = np.histogram (a=data, bins=np.logspace (np.log10(min), np.log10(max)+0.1, nbins))
        elif x_scale == "linear":
            count_y, bins = np.histogram (a=data, bins= np.linspace (min, max, nbins))

        # Remove last bin from labels
        count_x = bins[1:]

        # Smooth results with a gaussian filter
        if smooth_sigma:
            count_y = gaussian_filter1d (count_y, sigma=smooth_sigma)

        # Convert to python list
        count_x = [float(i) for i in count_x]
        count_y = [float(i) for i in count_y]

        return (count_x, count_y) 
開發者ID:a-slide,項目名稱:pycoQC,代碼行數:25,代碼來源:pycoQC_plot.py

示例6: load_zstack

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def load_zstack(self):
        name = QtGui.QFileDialog.getOpenFileName(
            self, "Open zstack", filter="*.tif"
        )
        self.fname = name[0]
        try:
            self.zstack = imread(self.fname)
            self.zLy, self.zLx = self.zstack.shape[1:]
            self.Zedit.setValidator(QtGui.QIntValidator(0, self.zstack.shape[0]))
            self.zrange = [np.percentile(self.zstack,1), np.percentile(self.zstack,99)]

            self.computeZ.setEnabled(True)
            self.zloaded = True
            self.zbox.setEnabled(True)
            self.zbox.setChecked(True)
            if 'zcorr' in self.ops[0]:
                if self.zstack.shape[0]==self.ops[0]['zcorr'].shape[0]:
                    zcorr = self.ops[0]['zcorr']
                    self.zmax = np.argmax(gaussian_filter1d(zcorr.T.copy(), 2, axis=1), axis=1)
                    self.plot_zcorr()

        except Exception as e:
            print('ERROR: %s'%e) 
開發者ID:MouseLand,項目名稱:suite2p,代碼行數:25,代碼來源:reggui.py

示例7: find_firsts

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def find_firsts(curve):
    curve = gaussian_filter1d(curve, STD)

    # fig, ax = plt.subplots(1)
    # ax.plot(curve)
    # ax.plot(curve)
    # ax.set_ylim([0, 8000])
    # plt.savefig('plots/junk_vis/test_smoothing.png', bbox_inches='tight', dpi=300)
    # plt.close()

    firsts = []
    for target in TARGETS:
        idxs = np.sort(np.asarray(curve > target).nonzero()[0])
        if idxs.size == 0:
            firsts.append(-1)
        else:
            firsts.append(idxs[0])
    return firsts 
開發者ID:KamyarGh,項目名稱:rl_swiss,代碼行數:20,代碼來源:compute_irl_convergence_rates.py

示例8: amplitude_cutoff

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def amplitude_cutoff(amplitudes, num_histogram_bins=500, histogram_smoothing_value=3):
    """ Calculate approximate fraction of spikes missing from a distribution of amplitudes

    Assumes the amplitude histogram is symmetric (not valid in the presence of drift)

    Inspired by metric described in Hill et al. (2011) J Neurosci 31: 8699-8705

    Input:
    ------
    amplitudes : numpy.ndarray
        Array of amplitudes (don't need to be in physical units)

    Output:
    -------
    fraction_missing : float
        Fraction of missing spikes (0-0.5)
        If more than 50% of spikes are missing, an accurate estimate isn't possible

    """

    h, b = np.histogram(amplitudes, num_histogram_bins, density=True)

    pdf = gaussian_filter1d(h, histogram_smoothing_value)
    support = b[:-1]

    peak_index = np.argmax(pdf)
    G = np.argmin(np.abs(pdf[peak_index:] - pdf[0])) + peak_index

    bin_size = np.mean(np.diff(support))
    fraction_missing = np.sum(pdf[G:]) * bin_size

    fraction_missing = np.min([fraction_missing, 0.5])

    return fraction_missing 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:36,代碼來源:ephysqc.py

示例9: test_orders_gauss

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def test_orders_gauss():
    # Check order inputs to Gaussians
    arr = np.zeros((1,))
    yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=0)
    yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=3)
    yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, -1
    yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, 4
    yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=0)
    yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=3)
    yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, -1
    yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, 4 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_filters.py

示例10: test_orders_gauss

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def test_orders_gauss():
    # Check order inputs to Gaussians
    arr = np.zeros((1,))
    assert_equal(0, sndi.gaussian_filter(arr, 1, order=0))
    assert_equal(0, sndi.gaussian_filter(arr, 1, order=3))
    assert_raises(ValueError, sndi.gaussian_filter, arr, 1, -1)
    assert_equal(0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=0))
    assert_equal(0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=3))
    assert_raises(ValueError, sndi.gaussian_filter1d, arr, 1, -1, -1) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:11,代碼來源:test_filters.py

示例11: test_multiple_modes_sequentially

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def test_multiple_modes_sequentially():
    # Test that the filters with multiple mode cababilities for different
    # dimensions give the same result as applying the filters with
    # different modes sequentially
    arr = np.array([[1., 0., 0.],
                    [1., 1., 0.],
                    [0., 0., 0.]])

    modes = ['reflect', 'wrap']

    expected = sndi.gaussian_filter1d(arr, 1, axis=0, mode=modes[0])
    expected = sndi.gaussian_filter1d(expected, 1, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.gaussian_filter(arr, 1, mode=modes))

    expected = sndi.uniform_filter1d(arr, 5, axis=0, mode=modes[0])
    expected = sndi.uniform_filter1d(expected, 5, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.uniform_filter(arr, 5, mode=modes))

    expected = sndi.maximum_filter1d(arr, size=5, axis=0, mode=modes[0])
    expected = sndi.maximum_filter1d(expected, size=5, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.maximum_filter(arr, size=5, mode=modes))

    expected = sndi.minimum_filter1d(arr, size=5, axis=0, mode=modes[0])
    expected = sndi.minimum_filter1d(expected, size=5, axis=1, mode=modes[1])
    assert_equal(expected,
                 sndi.minimum_filter(arr, size=5, mode=modes)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:31,代碼來源:test_filters.py

示例12: test_gaussian_truncate

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def test_gaussian_truncate():
    # Test that Gaussian filters can be truncated at different widths.
    # These tests only check that the result has the expected number
    # of nonzero elements.
    arr = np.zeros((100, 100), float)
    arr[50, 50] = 1
    num_nonzeros_2 = (sndi.gaussian_filter(arr, 5, truncate=2) > 0).sum()
    assert_equal(num_nonzeros_2, 21**2)
    num_nonzeros_5 = (sndi.gaussian_filter(arr, 5, truncate=5) > 0).sum()
    assert_equal(num_nonzeros_5, 51**2)

    # Test truncate when sigma is a sequence.
    f = sndi.gaussian_filter(arr, [0.5, 2.5], truncate=3.5)
    fpos = f > 0
    n0 = fpos.any(axis=0).sum()
    # n0 should be 2*int(2.5*3.5 + 0.5) + 1
    assert_equal(n0, 19)
    n1 = fpos.any(axis=1).sum()
    # n1 should be 2*int(0.5*3.5 + 0.5) + 1
    assert_equal(n1, 5)

    # Test gaussian_filter1d.
    x = np.zeros(51)
    x[25] = 1
    f = sndi.gaussian_filter1d(x, sigma=2, truncate=3.5)
    n = (f > 0).sum()
    assert_equal(n, 15)

    # Test gaussian_laplace
    y = sndi.gaussian_laplace(x, sigma=2, truncate=3.5)
    nonzero_indices = np.where(y != 0)[0]
    n = nonzero_indices.ptp() + 1
    assert_equal(n, 15)

    # Test gaussian_gradient_magnitude
    y = sndi.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5)
    nonzero_indices = np.where(y != 0)[0]
    n = nonzero_indices.ptp() + 1
    assert_equal(n, 15) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:41,代碼來源:test_filters.py

示例13: split_traces

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def split_traces(self,ds,threshold=30000):
        self._prepare_find_jumps()
        ds = self._hf[ds]
        # first we remove a bit of noise, size is the number of averages
        #flt = gaussian_filter1d(ds,10)
        flt = median_filter(ds,size=3)
        #flt = ds
        # the sobel filter finds the "jumps" 
        sb=sobel(flt)
        for i in sb:
            self.qps_jpn_hight.append(float(i))
            
        #for i in flt: self.qps_jpn_spec.append(float(i))
        offset=ds[0]
        tr_num = 0
        tr_name = "qps_tr_"+str(tr_num)
        tr_obj =  self._hf.add_value_vector(tr_name, 
                                            folder = 'analysis', 
                                            x = self._x_co, 
                                            unit = 'Hz')
        keepout = 4
        for i,tr in enumerate(flt):
            keepout += 1
            if abs(sb[i])>threshold and keepout>3:
                keepout = 0
                # new trace
                tr_num +=1
                tr_name = "qps_tr_"+str(tr_num)
                tr_obj =  self._hf.add_value_vector(tr_name, 
                                                    folder = 'analysis', 
                                                    x =  self._x_co, 
                                                    unit = 'Hz')
                print tr , i
                #tr_obj.append(float(tr))
            else:
                if keepout>2:
                    tr_obj.append(float(tr-offset)) 
開發者ID:qkitgroup,項目名稱:qkit,代碼行數:39,代碼來源:qps_rings.py

示例14: __init__

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def __init__(self, seq_type, root_dir, data_list, cache_path=None, step_size=10, window_size=1000,
                 random_shift=0, transform=None, **kwargs):
        super(HeadingDataset, self).__init__()
        self.seq_type = seq_type
        self.feature_dim = seq_type.feature_dim
        self.target_dim = seq_type.target_dim
        self.aux_dim = seq_type.aux_dim
        self.window_size = window_size
        self.step_size = step_size
        self.random_shift = random_shift
        self.transform = transform

        self.data_path = [osp.join(root_dir, data) for data in data_list]
        self.index_map = []

        self.features, self.targets, self.velocities = load_cached_sequences(
            seq_type, root_dir, data_list, cache_path, **kwargs)

        # Optionally smooth the sequence
        feat_sigma = kwargs.get('feature_sigma,', -1)
        targ_sigma = kwargs.get('target_sigma,', -1)
        if feat_sigma > 0:
            self.features = [gaussian_filter1d(feat, sigma=feat_sigma, axis=0) for feat in self.features]
        if targ_sigma > 0:
            self.targets = [gaussian_filter1d(targ, sigma=targ_sigma, axis=0) for targ in self.targets]

        max_norm = kwargs.get('max_velocity_norm', 3.0)
        for i in range(len(data_list)):
            self.features[i] = self.features[i][:-1]
            self.targets[i] = self.targets[i][:-1]
            self.velocities[i] = self.velocities[i]

            velocity = np.linalg.norm(self.velocities[i], axis=1)  # Remove outlier ground truth data
            bad_data = velocity > max_norm
            for j in range(window_size + random_shift, self.targets[i].shape[0], step_size):
                if not bad_data[j - window_size - random_shift:j + random_shift].any():
                    self.index_map.append([i, j])

        if kwargs.get('shuffle', True):
            random.shuffle(self.index_map) 
開發者ID:Sachini,項目名稱:ronin,代碼行數:42,代碼來源:data_glob_heading.py

示例15: __init__

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter1d [as 別名]
def __init__(self, seq_type, root_dir, data_list, cache_path=None, step_size=10, window_size=200,
                 random_shift=0, transform=None, **kwargs):
        super().__init__()
        self.feature_dim = seq_type.feature_dim
        self.target_dim = seq_type.target_dim
        self.aux_dim = seq_type.aux_dim
        self.window_size = window_size
        self.step_size = step_size
        self.random_shift = random_shift
        self.transform = transform

        self.data_path = [osp.join(root_dir, data) for data in data_list]
        self.index_map = []
        self.ts, self.orientations, self.gt_pos = [], [], []

        self.features, self.targets, aux = load_cached_sequences(
            seq_type, root_dir, data_list, cache_path, interval=1, **kwargs)

        # Optionally smooth the sequence
        feat_sigma = kwargs.get('feature_sigma,', -1)
        targ_sigma = kwargs.get('target_sigma,', -1)
        if feat_sigma > 0:
            self.features = [gaussian_filter1d(feat, sigma=feat_sigma, axis=0) for feat in self.features]
        if targ_sigma > 0:
            self.targets = [gaussian_filter1d(targ, sigma=targ_sigma, axis=0) for targ in self.targets]

        for i in range(len(data_list)):
            self.ts.append(aux[i][:, 0])
            self.orientations.append(aux[i][:, 1:5])
            self.gt_pos.append(aux[i][:, -3:])
            self.index_map += [[i, j] for j in range(window_size, self.targets[i].shape[0], step_size)]

        if kwargs.get('shuffle', True):
            random.shuffle(self.index_map) 
開發者ID:Sachini,項目名稱:ronin,代碼行數:36,代碼來源:data_glob_speed.py


注:本文中的scipy.ndimage.gaussian_filter1d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。