當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.gaussian_filter方法代碼示例

本文整理匯總了Python中scipy.ndimage.gaussian_filter方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.gaussian_filter方法的具體用法?Python ndimage.gaussian_filter怎麽用?Python ndimage.gaussian_filter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.gaussian_filter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ssim_exact

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def ssim_exact(img1, img2, sd=1.5, C1=0.01**2, C2=0.03**2):

    mu1 = gaussian_filter(img1, sd)
    mu2 = gaussian_filter(img2, sd)
    mu1_sq = mu1 * mu1
    mu2_sq = mu2 * mu2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = gaussian_filter(img1 * img1, sd) - mu1_sq
    sigma2_sq = gaussian_filter(img2 * img2, sd) - mu2_sq
    sigma12 = gaussian_filter(img1 * img2, sd) - mu1_mu2

    ssim_num = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2))

    ssim_den = ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))

    ssim_map = ssim_num / ssim_den
    return numpy.mean(ssim_map) 
開發者ID:aizvorski,項目名稱:video-quality,代碼行數:19,代碼來源:ssim.py

示例2: GaussianFilter

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def GaussianFilter(in_dem, sigma=1, out_file=None):

    print("Gaussian filtering ...")
    start_time = time.time()
    dem = rd.LoadGDAL(in_dem)
    no_data = dem.no_data
    projection = dem.projection
    geotransform = dem.geotransform

    gau = ndimage.gaussian_filter(dem, sigma=sigma)
    gau = np2rdarray(gau, no_data, projection, geotransform)
    print("Run time: {:.4f} seconds".format(time.time() - start_time))

    if out_file is not None:
        print("Saving dem ...")
        rd.SaveGDAL(out_file, gau)
        return out_file

    return gau


# #####################################  main script 
開發者ID:giswqs,項目名稱:lidar,代碼行數:24,代碼來源:filtering.py

示例3: random_blobs

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def random_blobs(shape, blobdensity, size, roughness=2.0):
    from random import randint
    from builtins import range  # python2 compatible
    h, w = shape
    numblobs = int(blobdensity * w * h)
    mask = np.zeros((h, w), 'i')
    for i in range(numblobs):
        mask[randint(0, h-1), randint(0, w-1)] = 1
    dt = ndi.distance_transform_edt(1-mask)
    mask =  np.array(dt < size, 'f')
    mask = ndi.gaussian_filter(mask, size/(2*roughness))
    mask -= np.amin(mask)
    mask /= np.amax(mask)
    noise = np.random.rand(h, w)
    noise = ndi.gaussian_filter(noise, size/(2*roughness))
    noise -= np.amin(noise)
    noise /= np.amax(noise)
    return np.array(mask * noise > 0.5, 'f') 
開發者ID:Calamari-OCR,項目名稱:calamari,代碼行數:20,代碼來源:degrade.py

示例4: printlike_fibrous

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def printlike_fibrous(image, blur=1.0, blotches=5e-5, inverted=None):
    if inverted:
        selector = image
    elif inverted is None:
        selector = autoinvert(image)
    else:
        selector = 1 - image

    selector = random_blotches(selector, 3*blotches, blotches)
    paper = make_multiscale_noise(image.shape, [1.0, 5.0, 10.0, 50.0], weights=[1.0, 0.3, 0.5, 0.3], span=(0.7, 1.0))
    paper -= make_fibrous_image(image.shape, 300, 500, 0.01, span=(0.0, 0.25), blur=0.5)
    ink = make_multiscale_noise(image.shape, [1.0, 5.0, 10.0, 50.0], span=(0.0, 0.5))
    blurred = ndi.gaussian_filter(selector, blur)
    printed = blurred * ink + (1-blurred) * paper
    if inverted:
        return 1 - printed
    else:
        return printed 
開發者ID:Calamari-OCR,項目名稱:calamari,代碼行數:20,代碼來源:degrade.py

示例5: test_generic_laplace01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def test_generic_laplace01(self):
        def derivative2(input, axis, output, mode, cval, a, b):
            sigma = [a, b / 2.0]
            input = numpy.asarray(input)
            order = [0] * input.ndim
            order[axis] = 2
            return ndimage.gaussian_filter(input, sigma, order,
                                           output, mode, cval)
        for type in self.types:
            array = numpy.array([[3, 2, 5, 1, 4],
                                    [5, 8, 3, 7, 1],
                                    [5, 6, 9, 3, 5]], type)
            output = numpy.zeros(array.shape, type)
            tmp = ndimage.generic_laplace(array, derivative2,
                    extra_arguments=(1.0,), extra_keywords={'b': 2.0})
            ndimage.gaussian_laplace(array, 1.0, output)
            assert_array_almost_equal(tmp, output) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_ndimage.py

示例6: filter

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def filter(self, signal):
        """Filter a given signal with a choice of filter type (self.lres_filter).
        """
        signal = signal.copy()
        filter_size = [1, self.downsamp_t*2-1, self.downsamp_xz*2-1, self.downsamp_xz*2-1]

        if self.lres_filter == 'none' or (not self.lres_filter):
            output = signal
        elif self.lres_filter == 'gaussian':
            sigma = [0, int(self.downsamp_t/2), int(self.downsamp_xz/2), int(self.downsamp_xz/2)]
            output = ndimage.gaussian_filter(signal, sigma=sigma)
        elif self.lres_filter == 'uniform':
            output = ndimage.uniform_filter(signal, size=filter_size)
        elif self.lres_filter == 'median':
            output = ndimage.median_filter(signal, size=filter_size)
        elif self.lres_filter == 'maximum':
            output = ndimage.maximum_filter(signal, size=filter_size)
        else:
            raise NotImplementedError(
                "lres_filter must be one of none/gaussian/uniform/median/maximum")
        return output 
開發者ID:maxjiang93,項目名稱:space_time_pde,代碼行數:23,代碼來源:dataloader_spacetime.py

示例7: gaussian_filter_with_nan

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def gaussian_filter_with_nan(U,sigma):
    """
    Apply Gaussian filter when the data contain NaN
    INPUT:
        U           : a 2-D array (matrix)
        sigma       : std for the Gaussian kernel
    OUTPUT:
        Z           : filtered matrix
    """
    V=U.copy()
    V[np.isnan(U)]=0
    VV= ndimage.gaussian_filter(V,sigma=sigma)

    W=0*U.copy()+1
    W[np.isnan(U)]=0
    WW= ndimage.gaussian_filter(W,sigma=sigma)
    Z=VV/WW
    return(Z)

#===============================================================================
#=============================================================================== 
開發者ID:dnguyengithub,項目名稱:MultitaskAIS,代碼行數:23,代碼來源:utils.py

示例8: test_generic_laplace01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def test_generic_laplace01(self):
        def derivative2(input, axis, output, mode, cval, a, b):
            sigma = [a, b / 2.0]
            input = numpy.asarray(input)
            order = [0] * input.ndim
            order[axis] = 2
            return ndimage.gaussian_filter(input, sigma, order,
                                           output, mode, cval)
        for type_ in self.types:
            array = numpy.array([[3, 2, 5, 1, 4],
                                 [5, 8, 3, 7, 1],
                                 [5, 6, 9, 3, 5]], type_)
            output = numpy.zeros(array.shape, type_)
            tmp = ndimage.generic_laplace(array, derivative2,
                                          extra_arguments=(1.0,),
                                          extra_keywords={'b': 2.0})
            ndimage.gaussian_laplace(array, 1.0, output)
            assert_array_almost_equal(tmp, output) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:20,代碼來源:test_ndimage.py

示例9: chunk_lcn

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def chunk_lcn(chunk, sigma_mean, sigma_std, std_bias=0.0, rescale=1.0):
    """
    based on matlab code by Guanglei Xiong, see http://www.mathworks.com/matlabcentral/fileexchange/8303-local-normalization
    assuming chunk.shape == (num_examples, x, y, channels)

    'rescale' is an additional rescaling constant to get the variance of the result in the 'right' range.
    """
    means = np.zeros(chunk.shape, dtype=chunk.dtype)
    for k in xrange(len(chunk)):
        means[k] = skimage.filter.gaussian_filter(chunk[k], sigma_mean, multichannel=True)

    chunk = chunk - means # centering
    del means # keep memory usage in check

    variances = np.zeros(chunk.shape, dtype=chunk.dtype)
    chunk_squared = chunk**2
    for k in xrange(len(chunk)):
        variances[k] = skimage.filter.gaussian_filter(chunk_squared[k], sigma_std, multichannel=True)

    chunk = chunk / np.sqrt(variances + std_bias)

    return chunk / rescale

    # TODO: make this 100x faster lol. otherwise it's not usable. 
開發者ID:benanne,項目名稱:kaggle-galaxies,代碼行數:26,代碼來源:load_data.py

示例10: get_saliency_for_shallownet

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def get_saliency_for_shallownet(image_url,sal_url):
    arr_files = glob.glob(image_url+"*.jpg")
    for i in range(len(arr_files)):  
        url_image = arr_files[i]
        image = io.imread(url_image)       
        img = misc.imresize(image,(96,96))
        img = np.asarray(img, dtype = 'float32') / 255.
        img = img.transpose(2,0,1).reshape(3, 96, 96)
        xt = np.zeros((1, 3, 96, 96), dtype='float32')
        xt[0]=img
        y = juntingnet.predict(xt)
        tmp = y.reshape(48,48)
        blured= ndimage.gaussian_filter(tmp, sigma=3)
        sal_map = cv2.resize(tmp,(image.shape[1],image.shape[0]))
        sal_map -= np.min(sal_map)
        sal_map /= np.max(sal_map)
        #saliency = misc.imresize(y,(img.shape[0],img.shape[1]))
        aux = url_image.split("/")[-1].split(".")[0]
        misc.imsave(sal_url+'/'+aux+'.png', sal_map) 
開發者ID:imatge-upc,項目名稱:saliency-2016-cvpr,代碼行數:21,代碼來源:get_saliency.py

示例11: tf

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def tf(self, img, k=0):
        if self.num > 0 and k >= self.num:
            return img

        # image is nhwtc
        for n in range(img.shape[0]):
            sig = self.sigma.sample()
            # sample each channel saperately to avoid correlations
            if sig > self.eps:
                if len(img.shape) == self.dim+2:
                    C = img.shape[-1]
                    for c in range(C):
                        img[n,..., c] = ndimage.gaussian_filter(img[n, ..., c], sig)
                elif len(img.shape) == self.dim+1:
                    img[n] = ndimage.gaussian_filter(img[n], sig)
                else:
                    raise ValueError('image shape is not supported')

        return img 
開發者ID:China-LiuXiaopeng,項目名稱:BraTS-DMFNet,代碼行數:21,代碼來源:transforms.py

示例12: threshold_segmentation

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def threshold_segmentation(img):
    # calculate the overview level size and retrieve the image
    img_hsv = img.convert('HSV')
    img_hsv_np = np.array(img_hsv)

    # dilate image and then threshold the image
    schannel = img_hsv_np[:, :, 1]
    mask = np.zeros(schannel.shape)

    schannel = dilation(schannel, star(3))
    schannel = ndimage.gaussian_filter(schannel, sigma=(5, 5), order=0)
    threshold_global = threshold_otsu(schannel)

    mask[schannel > threshold_global] = FOREGROUND
    mask[schannel <= threshold_global] = BACKGROUND

    return mask 
開發者ID:iMoonLab,項目名稱:THU-DeepHypergraph,代碼行數:19,代碼來源:sample_patches.py

示例13: circular_filter_1d

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def circular_filter_1d(signal, window_size, kernel='gaussian'):

    """ This function filters circularly the signal inputted with a median filter of inputted size, in this context
    circularly means that the signal is wrapped around and then filtered
    inputs :
        - signal : 1D numpy array
        - window_size : size of the kernel, an int
    outputs :
        - signal_smoothed : 1D numpy array, same size as signal"""

    signal_extended = np.concatenate((signal, signal, signal))  # replicate signal at both ends
    if kernel == 'gaussian':
        signal_extended_smooth = ndimage.gaussian_filter(signal_extended, window_size)  # gaussian
    elif kernel == 'median':
        signal_extended_smooth = medfilt(signal_extended, window_size)  # median filtering
    else:
        raise Exception("Unknow type of kernel")

    signal_smoothed = signal_extended_smooth[len(signal):2*len(signal)]  # truncate back the signal

    return signal_smoothed 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:23,代碼來源:msct_register.py

示例14: subtract_background_dog

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def subtract_background_dog(z, sigma_min, sigma_max):
    """Difference of gaussians method for background removal.

    Parameters
    ----------
    sigma_max : float
        Large gaussian blur sigma.
    sigma_min : float
        Small gaussian blur sigma.

    Returns
    -------
        Denoised diffraction pattern as np.array
    """
    blur_max = ndi.gaussian_filter(z, sigma_max)
    blur_min = ndi.gaussian_filter(z, sigma_min)

    return np.maximum(np.where(blur_min > blur_max, z, 0) - blur_max, 0) 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:20,代碼來源:expt_utils.py

示例15: find_beam_center_blur

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import gaussian_filter [as 別名]
def find_beam_center_blur(z, sigma):
    """Estimate direct beam position by blurring the image with a large
    Gaussian kernel and finding the maximum.

    Parameters
    ----------
    sigma : float
        Sigma value for Gaussian blurring kernel.

    Returns
    -------
    center : np.array
        np.array containing indices of estimated direct beam positon.
    """
    blurred = ndi.gaussian_filter(z, sigma, mode="wrap")
    center = np.unravel_index(blurred.argmax(), blurred.shape)
    return np.array(center) 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:19,代碼來源:expt_utils.py


注:本文中的scipy.ndimage.gaussian_filter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。