當前位置: 首頁>>代碼示例>>Python>>正文


Python filters.uniform_filter方法代碼示例

本文整理匯總了Python中scipy.ndimage.filters.uniform_filter方法的典型用法代碼示例。如果您正苦於以下問題:Python filters.uniform_filter方法的具體用法?Python filters.uniform_filter怎麽用?Python filters.uniform_filter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.filters的用法示例。


在下文中一共展示了filters.uniform_filter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: filter_local_maxima_with_std

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def filter_local_maxima_with_std(self, ft2d):
        data = np.abs(np.fft.fftshift(ft2d))
        data /= (np.max(data) + 1e-7)

        data_max = maximum_filter(data, self.neighborhood_size)
        data_mean = uniform_filter(data, self.neighborhood_size)
        data_mean_sq = uniform_filter(data ** 2, self.neighborhood_size)
        data_std = np.sqrt(data_mean_sq - data_mean ** 2) + 1e-7

        maxima = ((data_max - data_mean) / data_std)
        fraction_of_local_max = (data == data_max)
        maxima *= fraction_of_local_max
        maxima = maxima.astype(float)
        maxima /= (np.max(maxima) + 1e-7)

        maxima = np.maximum(maxima, np.fliplr(maxima), np.flipud(maxima))
        maxima = np.fft.ifftshift(maxima)

        background_ft2d = np.multiply(maxima, ft2d)
        foreground_ft2d = np.multiply(1 - maxima, ft2d)

        return background_ft2d, foreground_ft2d 
開發者ID:nussl,項目名稱:nussl,代碼行數:24,代碼來源:ft2d.py

示例2: test_ktables_unbinned

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def test_ktables_unbinned(self):
        profile = Profile()
        profile.set_from_radiative_solution(
            5052, 0.75 * R_sun, 0.03142 * AU, 1.129 * M_jup, 1.115 * R_jup,
            0.983, -1.77, -0.44, -0.56, 0.23)
        xsec_calc = EclipseDepthCalculator(method="xsec")
        ktab_calc = EclipseDepthCalculator(method="ktables")
        xsec_wavelengths, xsec_depths = xsec_calc.compute_depths(
            profile, 0.75 * R_sun, 1.129 * M_jup, 1.115 * R_jup,
            5052)
        N = 10
        smoothed_xsec_wavelengths = uniform_filter(xsec_wavelengths, N)[::N]
        smoothed_xsec_depths = uniform_filter(xsec_depths, N)[::N]
        
        ktab_wavelengths, ktab_depths = ktab_calc.compute_depths(
            profile, 0.75 * R_sun, 1.129 * M_jup, 1.115 * R_jup,
            5052)
        rel_diffs = np.abs(ktab_depths - smoothed_xsec_depths[:-1])/ ktab_depths
        self.assertTrue(np.median(rel_diffs) < 0.05) 
開發者ID:ideasrule,項目名稱:platon,代碼行數:21,代碼來源:test_eclipse_depth_calculator.py

示例3: test_k_coeffs_unbinned

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def test_k_coeffs_unbinned(self):
        xsec_calc = TransitDepthCalculator(method="xsec")
        ktab_calc = TransitDepthCalculator(method="ktables")
                
        xsec_wavelengths, xsec_depths = xsec_calc.compute_depths(R_sun, M_jup, R_jup, 1000)

        #Smooth from R=1000 to R=100 to match ktables
        N = 10
        smoothed_xsec_wavelengths = uniform_filter(xsec_wavelengths, N)[::N]
        smoothed_xsec_depths = uniform_filter(xsec_depths, N)[::N]
        ktab_wavelengths, ktab_depths = ktab_calc.compute_depths(R_sun, M_jup, R_jup, 1000)
        
        diffs = np.abs(ktab_depths - smoothed_xsec_depths[:-1])
        self.assertTrue(np.median(diffs) < 20e-6)
        self.assertTrue(np.percentile(diffs, 95) < 50e-6)
        self.assertTrue(np.max(diffs) < 150e-6) 
開發者ID:ideasrule,項目名稱:platon,代碼行數:18,代碼來源:test_transit_depth_calculator.py

示例4: compute_gradmaps

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def compute_gradmaps(self, binary, scale):
        # use gradient filtering to find baselines
        boxmap = psegutils.compute_boxmap(binary, scale, (0.4, 5))
        cleaned = boxmap*binary
        if self.parameter['usegauss']:
            # this uses Gaussians
            grad = gaussian_filter(1.0*cleaned, (self.parameter['vscale']*0.3*scale,
                                                 self.parameter['hscale']*6*scale), order=(1, 0))
        else:
            # this uses non-Gaussian oriented filters
            grad = gaussian_filter(1.0*cleaned, (max(4, self.parameter['vscale']*0.3*scale),
                                                 self.parameter['hscale']*scale), order=(1, 0))
            grad = uniform_filter(grad, (self.parameter['vscale'], self.parameter['hscale']*6*scale))
        bottom = ocrolib.norm_max((grad < 0)*(-grad))
        top = ocrolib.norm_max((grad > 0)*grad)
        testseeds = np.zeros(binary.shape, 'i')
        return bottom, top, boxmap 
開發者ID:OCR-D,項目名稱:ocrd_anybaseocr,代碼行數:19,代碼來源:ocrd_anybaseocr_textline.py

示例5: filter

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def filter(self, array, *args, **kwargs):
        array = np.exp(1j * array)
        win = (7, 7)
        coh = filters.uniform_filter(
            np.abs(filters.uniform_filter(array.real, win) + 1j * filters.uniform_filter(array.imag, win)), win)

        bp = Blocxy(array, (self.bs, self.bs), (self.bs // 2, self.bs // 2))
        bc = Blocxy(coh, (self.bs, self.bs), (self.bs // 2, self.bs // 2))
        for block, cblock in zip(bp.getiterblocks(), bc.getiterblocks()):
            block = np.fft.fft2(block)
            block *= abs(block) ** (1.0 - np.mean(cblock[self.bs // 4:self.bs // 4 * 3, self.bs // 4:self.bs // 4 * 3]))
            block = np.fft.ifft2(block)
            bp.setiterblocks(block)
        output = bp.getresult()
        output = np.angle(output)
        return output 
開發者ID:birgander2,項目名稱:PyRAT,代碼行數:18,代碼來源:Denoise.py

示例6: filter

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def filter(self, array, *args, **kwargs):
        win = self.win
        if array.ndim == 3:
            win = [1] + self.win
        if array.ndim == 4:
            win = [1, 1] + self.win
        array[np.isnan(array)] = 0.0
        if np.iscomplexobj(array):
            return sp.ndimage.filters.uniform_filter(array.real, win) + 1j * sp.ndimage.filters.uniform_filter(
                array.imag, win)
        elif self.phase is True:
            tmp = np.exp(1j * array)
            tmp = sp.ndimage.filters.uniform_filter(tmp.real, win) + 1j * sp.ndimage.filters.uniform_filter(tmp.imag,
                                                                                                            win)
            return np.angle(tmp)
        else:
            return sp.ndimage.filters.uniform_filter(array.real, win) 
開發者ID:birgander2,項目名稱:PyRAT,代碼行數:19,代碼來源:Filter.py

示例7: measure

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def measure(self, line):
        h, w = line.shape
        smoothed = filters.gaussian_filter(line, (h * 0.5, h * self.smoothness), mode='constant')
        smoothed += 0.001 * filters.uniform_filter(smoothed, (h * 0.5, w), mode='constant')
        a = np.argmax(smoothed, axis=0)
        a = filters.gaussian_filter(a, h * self.extra)
        center = np.array(a, 'i')
        deltas = abs(np.arange(h)[:, np.newaxis] - center[np.newaxis, :])
        mad = np.mean(deltas[line != 0])
        r = int(1 + self.range * mad)

        return center, r 
開發者ID:Calamari-OCR,項目名稱:calamari,代碼行數:14,代碼來源:center_normalizer.py

示例8: wiener_adaptive

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def wiener_adaptive(x: np.ndarray, noise_var: float, **kwargs) -> np.ndarray:
    """
    WaveNoise as from Binghamton toolbox.
    Wiener adaptive flter aimed at extracting the noise component
    For each input pixel the average variance over a neighborhoods of different window sizes is first computed.
    The smaller average variance is taken into account when filtering according to Wiener.
    :param x: 2D matrix
    :param noise_var: Power spectral density of the noise we wish to extract (S)
    :param window_size_list: list of window sizes
    :return: wiener filtered version of input x
    """
    window_size_list = list(kwargs.pop('window_size_list', [3, 5, 7, 9]))

    energy = x ** 2

    avg_win_energy = np.zeros(x.shape + (len(window_size_list),))
    for window_idx, window_size in enumerate(window_size_list):
        avg_win_energy[:, :, window_idx] = filters.uniform_filter(energy,
                                                                  window_size,
                                                                  mode='constant')

    coef_var = threshold(avg_win_energy, noise_var)
    coef_var_min = np.min(coef_var, axis=2)

    x = x * noise_var / (coef_var_min + noise_var)

    return x 
開發者ID:polimi-ispl,項目名稱:prnu-python,代碼行數:29,代碼來源:functions.py

示例9: test_all

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def test_all():
    print("~"*40, " maximum filter")
    _test_some(max_filter, spf.maximum_filter, cval = -np.inf)
    print("~" * 40, " minimum filter")
    _test_some(min_filter, spf.minimum_filter, cval = np.inf)
    print("~" * 40, " uniform filter")
    _test_some(uniform_filter, spf.uniform_filter, cval = 0.) 
開發者ID:maweigert,項目名稱:gputools,代碼行數:9,代碼來源:test_generic_separable_filters.py

示例10: rb_dilation

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def rb_dilation(image, size, origin=0):
    """Binary dilation using linear filters."""
    output = np.zeros(image.shape, 'f')
    filters.uniform_filter(image, size, output=output, origin=origin,
                           mode='constant', cval=0)
    return np.array(output > 0, 'i') 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:8,代碼來源:morph.py

示例11: rb_erosion

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def rb_erosion(image, size, origin=0):
    """Binary erosion using linear filters."""
    output = np.zeros(image.shape, 'f')
    filters.uniform_filter(image, size, output=output, origin=origin,
                           mode='constant', cval=1)
    return np.array(output == 1, 'i') 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:8,代碼來源:morph.py

示例12: measure

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def measure(self, line):
        h, w = line.shape
        # XXX: this filter is awfully slow
        smoothed = filters.gaussian_filter(line, (h*0.5, h*self.smoothness),
                                           mode='constant')
        smoothed += 0.001*filters.uniform_filter(smoothed, (h*0.5, w),
                                                 mode='constant')
        self.shape = (h, w)
        a = np.argmax(smoothed, axis=0)
        a = filters.gaussian_filter(a, h*self.extra)
        self.center = np.array(a, 'i')
        deltas = np.abs(np.arange(h)[:, np.newaxis]-self.center[np.newaxis, :])
        self.mad = np.mean(deltas[line != 0])
        self.r = int(1+self.range*self.mad) 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:16,代碼來源:lineest.py

示例13: d_s

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def d_s (pan,ms,fused,q=1,r=4,ws=7):
	"""calculates Spatial Distortion Index (D_S).

	:param pan: high resolution panchromatic image.
	:param ms: low resolution multispectral image.
	:param fused: high resolution fused image.
	:param q: parameter to emphasize large spatial differences (default = 1).
	:param r: ratio of high resolution to low resolution (default=4).
	:param ws: sliding window size (default = 7).

	:returns:  float -- D_S.
	"""
	pan = pan.astype(np.float64)
	fused = fused.astype(np.float64)

	pan_degraded = uniform_filter(pan.astype(np.float64), size=ws)/(ws**2)
	pan_degraded = imresize(pan_degraded,(pan.shape[0]//r,pan.shape[1]//r))

	L = ms.shape[2]

	M1 = np.zeros(L)
	M2 = np.zeros(L)

	for l in range(L):
		M1[l] = uqi(fused[:,:,l],pan)
		M2[l] = uqi(ms[:,:,l],pan_degraded)

	diff = np.abs(M1 - M2)**q
	return ((1./L)*(np.sum(diff)))**(1./q) 
開發者ID:andrewekhalel,項目名稱:sewar,代碼行數:31,代碼來源:no_ref.py

示例14: _high_pass

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def _high_pass(
        image: xr.DataArray, size: Number, rescale: bool = False
    ) -> xr.DataArray:
        """
        Applies a mean high pass filter to an image

        Parameters
        ----------
        image : xr.DataArray
            2-d or 3-d image data
        size : Union[Number, Tuple[Number]]
            width of the kernel
        rescale : bool
            If true scales data by max value, if false clips max values to one

        Returns
        -------
        xr.DataArray:
            Filtered image, same shape as input
        """

        blurred: np.ndarray = uniform_filter(image, size)

        filtered: np.ndarray = image - blurred

        return filtered 
開發者ID:spacetx,項目名稱:starfish,代碼行數:28,代碼來源:mean_high_pass.py

示例15: neuropil_subtraction

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import uniform_filter [as 別名]
def neuropil_subtraction(mov,lx):
    """ subtract low-pass filtered version of binned movie

    low-pass filtered version ~ neuropil
    subtract to help ignore neuropil
    
    Parameters
    ----------------

    mov : 3D array
        binned movie, size [nbins x Ly x Lx]

    lx : int
        size of filter

    Returns
    ----------------

    mov : 3D array
        binned movie with "neuropil" subtracted, size [nbins x Ly x Lx]

    """
    if len(mov.shape)<3:
        mov = mov[np.newaxis, :, :]
    nbinned, Ly, Lx = mov.shape
    c1 = uniform_filter(np.ones((Ly,Lx)), size=[lx, lx], mode = 'constant')
    for j in range(nbinned):
        mov[j] -= uniform_filter(mov[j], size=[lx, lx], mode = 'constant') / c1
    return mov 
開發者ID:MouseLand,項目名稱:suite2p,代碼行數:31,代碼來源:sparsedetect.py


注:本文中的scipy.ndimage.filters.uniform_filter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。