本文整理匯總了Python中scipy.ndimage.filters.laplace方法的典型用法代碼示例。如果您正苦於以下問題:Python filters.laplace方法的具體用法?Python filters.laplace怎麽用?Python filters.laplace使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage.filters
的用法示例。
在下文中一共展示了filters.laplace方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: drlse_edge
# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import laplace [as 別名]
def drlse_edge(phi_0, g, lmda, mu, alfa, epsilon, timestep, iters, potentialFunction): # Updated Level Set Function
"""
:param phi_0: level set function to be updated by level set evolution
:param g: edge indicator function
:param lmda: weight of the weighted length term
:param mu: weight of distance regularization term
:param alfa: weight of the weighted area term
:param epsilon: width of Dirac Delta function
:param timestep: time step
:param iters: number of iterations
:param potentialFunction: choice of potential function in distance regularization term.
% As mentioned in the above paper, two choices are provided: potentialFunction='single-well' or
% potentialFunction='double-well', which correspond to the potential functions p1 (single-well)
% and p2 (double-well), respectively.
"""
phi = phi_0.copy()
[vy, vx] = np.gradient(g)
for k in range(iters):
phi = NeumannBoundCond(phi)
[phi_y, phi_x] = np.gradient(phi)
s = np.sqrt(np.square(phi_x) + np.square(phi_y))
smallNumber = 1e-10
Nx = phi_x / (s + smallNumber) # add a small positive number to avoid division by zero
Ny = phi_y / (s + smallNumber)
curvature = div(Nx, Ny)
if potentialFunction == 'single-well':
distRegTerm = filters.laplace(phi, mode='wrap') - curvature # compute distance regularization term in equation (13) with the single-well potential p1.
elif potentialFunction == 'double-well':
distRegTerm = distReg_p2(phi) # compute the distance regularization term in eqaution (13) with the double-well potential p2.
else:
print('Error: Wrong choice of potential function. Please input the string "single-well" or "double-well" in the drlse_edge function.')
diracPhi = Dirac(phi, epsilon)
areaTerm = diracPhi * g # balloon/pressure force
edgeTerm = diracPhi * (vx * Nx + vy * Ny) + diracPhi * g * curvature
phi = phi + timestep * (mu * distRegTerm + lmda * edgeTerm + alfa * areaTerm)
return phi
示例2: distReg_p2
# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import laplace [as 別名]
def distReg_p2(phi):
"""
compute the distance regularization term with the double-well potential p2 in equation (16)
"""
[phi_y, phi_x] = np.gradient(phi)
s = np.sqrt(np.square(phi_x) + np.square(phi_y))
a = (s >= 0) & (s <= 1)
b = (s > 1)
ps = a * np.sin(2 * np.pi * s) / (2 * np.pi) + b * (s - 1) # compute first order derivative of the double-well potential p2 in equation (16)
dps = ((ps != 0) * ps + (ps == 0)) / ((s != 0) * s + (s == 0)) # compute d_p(s)=p'(s)/s in equation (10). As s-->0, we have d_p(s)-->1 according to equation (18)
return div(dps * phi_x - phi_x, dps * phi_y - phi_y) + filters.laplace(phi, mode='wrap')
示例3: measure_sharpness
# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import laplace [as 別名]
def measure_sharpness(img):
"""Measures the sharpeness of an image using the variance of the laplacian
img: PIL.Image
Returns the variance of the laplacian. Higher values mean a sharper image
"""
img_gray = np.array(img.convert('L'), dtype=np.float32)
return np.var(laplace(img_gray))
示例4: test_laplace_comprehensions
# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import laplace [as 別名]
def test_laplace_comprehensions():
np.random.seed(0)
a = np.random.random((3, 12, 14))
d = da.from_array(a, chunks=(3, 6, 7))
l2s = [da_ndf.laplace(d[i]) for i in range(len(d))]
l2c = [da_ndf.laplace(d[i])[None] for i in range(len(d))]
dau.assert_eq(np.stack(l2s), da.stack(l2s))
dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c))
示例5: test_laplace_compare
# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import laplace [as 別名]
def test_laplace_compare():
s = (10, 11, 12)
a = np.arange(float(np.prod(s))).reshape(s)
d = da.from_array(a, chunks=(5, 5, 6))
dau.assert_eq(
sp_ndf.laplace(a),
da_ndf.laplace(d)
)
示例6: gvf
# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import laplace [as 別名]
def gvf(f, mu=0.05, iterations=30, anisotropic=False,
ignore_second_term=False):
# Gradient vector flow
# Translated from https://github.com/smistad/3D-Gradient-Vector-Flow-for-Matlab
f = (f - f.min()) / (f.max() - f.min())
f = enforce_mirror_boundary(
f) # Enforce the mirror conditions on the boundary
dx, dy, dz = np.gradient(f) # Initialse with normal gradients
'''
Initialise the GVF vectors following S3 in
Yu, Zeyun, and Chandrajit Bajaj.
"A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion."
CVPR, 2004. CVPR 2004.
It only uses one of the surronding neighbours with the lowest intensity
'''
magsq = dx**2 + dy**2 + dz**2
# Set up the initial vector field
u = dx.copy()
v = dy.copy()
w = dz.copy()
for i in tqdm(range(iterations)):
# The boundary might not matter here
# u = enforce_mirror_boundary(u)
# v = enforce_mirror_boundary(v)
# w = enforce_mirror_boundary(w)
# Update the vector field
if anisotropic:
G = g_all(u, v, w)
u += mu / 6. * div(np.sum(G * d(u), axis=0))
v += mu / 6. * div(np.sum(G * d(v), axis=0))
w += mu / 6. * div(np.sum(G * d(w), axis=0))
else:
u += mu * 6 * laplace(u)
v += mu * 6 * laplace(v)
w += mu * 6 * laplace(w)
if not ignore_second_term:
u -= (u - dx) * magsq
v -= (v - dy) * magsq
w -= (w - dz) * magsq
return np.stack((u, v, w), axis=0)