當前位置: 首頁>>代碼示例>>Python>>正文


Python filters.gaussian_filter方法代碼示例

本文整理匯總了Python中scipy.ndimage.filters.gaussian_filter方法的典型用法代碼示例。如果您正苦於以下問題:Python filters.gaussian_filter方法的具體用法?Python filters.gaussian_filter怎麽用?Python filters.gaussian_filter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage.filters的用法示例。


在下文中一共展示了filters.gaussian_filter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: elastic_transform

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def elastic_transform(image, alpha=1000, sigma=30, spline_order=1, mode='nearest', random_state=np.random):
    """Elastic deformation of image as described in [Simard2003]_.
    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
       Convolutional Neural Networks applied to Visual Document Analysis", in
       Proc. of the International Conference on Document Analysis and
       Recognition, 2003.
    """
    assert image.ndim == 3
    shape = image.shape[:2]

    dx = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha
    dy = gaussian_filter((random_state.rand(*shape) * 2 - 1),
                         sigma, mode="constant", cval=0) * alpha

    x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
    indices = [np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))]
    result = np.empty_like(image)
    for i in range(image.shape[2]):
        result[:, :, i] = map_coordinates(
            image[:, :, i], indices, order=spline_order, mode=mode).reshape(shape)
    return result 
開發者ID:ozan-oktay,項目名稱:Attention-Gated-Networks,代碼行數:24,代碼來源:myImageTransformations.py

示例2: smoothing

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def smoothing(im, mode = None):
    # utility function to smooth an image
    if mode is None:
        return im
    elif mode == 'L2':
        # L2 norm
        return im / (np.sqrt(np.mean(np.square(im))) + K.epsilon())
    elif mode == 'GaussianBlur':
        # Gaussian Blurring with width of 3
        return filters.gaussian_filter(im,1/8)
    elif mode == 'Decay':
        # Decay regularization
        decay = 0.98
        return decay * im
    elif mode == 'Clip_weak':
        # Clip weak pixel regularization
        percentile = 1
        threshold = np.percentile(np.abs(im),percentile)
        im[np.where(np.abs(im) < threshold)] = 0
        return im
    else:
        # print error message
        print('Unknown smoothing parameter. No smoothing implemented.')
        return im 
開發者ID:crild,項目名稱:facies_net,代碼行數:26,代碼來源:feature_vis.py

示例3: _log_density

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def _log_density(self, stimulus):
        shape = stimulus.shape[0], stimulus.shape[1]

        stimulus_id = get_image_hash(stimulus)
        stimulus_index = self.stimuli.stimulus_ids.index(stimulus_id)

        #fixations = self.fixations[self.fixations.n == stimulus_index]
        inds = self.fixations.n != stimulus_index

        ZZ = np.zeros(shape)

        _fixations = np.array([self.ys[inds]*shape[0], self.xs[inds]*shape[1]]).T
        fill_fixation_map(ZZ, _fixations)
        ZZ = gaussian_filter(ZZ, [self.bandwidth*shape[0], self.bandwidth*shape[1]])
        ZZ *= (1-self.eps)
        ZZ += self.eps * 1.0/(shape[0]*shape[1])
        ZZ = np.log(ZZ)

        ZZ -= logsumexp(ZZ)
        #ZZ -= np.log(np.exp(ZZ).sum())

        return ZZ 
開發者ID:matthias-k,項目名稱:pysaliency,代碼行數:24,代碼來源:baseline_utils.py

示例4: pick_peaks

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def pick_peaks(nc, L=16, offset_denom=0.1):
    """Obtain peaks from a novelty curve using an adaptive threshold."""
    offset = nc.mean() * float(offset_denom)
    th = filters.median_filter(nc, size=L) + offset
    #th = filters.gaussian_filter(nc, sigma=L/2., mode="nearest") + offset
    #import pylab as plt
    #plt.plot(nc)
    #plt.plot(th)
    #plt.show()
    # th = np.ones(nc.shape[0]) * nc.mean() - 0.08
    peaks = []
    for i in range(1, nc.shape[0] - 1):
        # is it a peak?
        if nc[i - 1] < nc[i] and nc[i] > nc[i + 1]:
            # is it above the threshold?
            if nc[i] > th[i]:
                peaks.append(i)
    return peaks 
開發者ID:urinieto,項目名稱:msaf,代碼行數:20,代碼來源:segmenter.py

示例5: pick_peaks

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def pick_peaks(nc, L=16):
    """Obtain peaks from a novelty curve using an adaptive threshold."""
    offset = nc.mean() / 20.

    nc = filters.gaussian_filter1d(nc, sigma=4)  # Smooth out nc

    th = filters.median_filter(nc, size=L) + offset
    #th = filters.gaussian_filter(nc, sigma=L/2., mode="nearest") + offset

    peaks = []
    for i in range(1, nc.shape[0] - 1):
        # is it a peak?
        if nc[i - 1] < nc[i] and nc[i] > nc[i + 1]:
            # is it above the threshold?
            if nc[i] > th[i]:
                peaks.append(i)
    #plt.plot(nc)
    #plt.plot(th)
    #for peak in peaks:
        #plt.axvline(peak)
    #plt.show()

    return peaks 
開發者ID:urinieto,項目名稱:msaf,代碼行數:25,代碼來源:segmenter.py

示例6: preprocess_img

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def preprocess_img(inputfile, output_preprocessed, zooms):
    img = nib.load(inputfile)
    data = img.get_data()
    affine = img.affine
    zoom = img.header.get_zooms()[:3]
    data, affine = reslice(data, affine, zoom, zooms, 1)
    data = np.squeeze(data)
    data = np.pad(data, [(0, 256 - len_) for len_ in data.shape], "constant")

    data_sub = data - gaussian_filter(data, sigma=1)
    img = sitk.GetImageFromArray(np.copy(data_sub))
    img = sitk.AdaptiveHistogramEqualization(img)
    data_clahe = sitk.GetArrayFromImage(img)[:, :, :, None]
    data = np.concatenate((data_clahe, data[:, :, :, None]), 3)
    data = (data - np.mean(data, (0, 1, 2))) / np.std(data, (0, 1, 2))
    assert data.ndim == 4, data.ndim
    assert np.allclose(np.mean(data, (0, 1, 2)), 0.), np.mean(data, (0, 1, 2))
    assert np.allclose(np.std(data, (0, 1, 2)), 1.), np.std(data, (0, 1, 2))
    data = np.float32(data)

    img = nib.Nifti1Image(data, affine)
    nib.save(img, output_preprocessed) 
開發者ID:Ryo-Ito,項目名稱:brain_segmentation,代碼行數:24,代碼來源:preprocess.py

示例7: lucas_kanade

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def lucas_kanade(stem, pat: str, kernel: int = 5, Nfilter: int = 7):
    flist = getimgfiles(stem, pat)

    # %% priming read
    im1 = imageio.imread(flist[0], as_gray=True)

    # %% evaluate the first frame's POI
    X = im1.shape[1] // 16
    Y = im1.shape[0] // 16
    poi = getPOI(X, Y, kernel)
    # % get the weights
    W = gaussianWeight(kernel)
    # %% loop over all images in directory
    for i in range(1, len(flist)):
        im2 = imageio.imread(flist[i], as_gray=True)

        im2 = gaussian_filter(im2, Nfilter)

        V = LucasKanade(im1, im2, kernel, poi, W)

        compareGraphsLK(im1, im2, poi, V)

        im1 = im2.copy() 
開發者ID:scivision,項目名稱:pyoptflow,代碼行數:25,代碼來源:LucasKanade.py

示例8: get_diffraction_test_image

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def get_diffraction_test_image(self, dtype=np.float32):
        image_x, image_y = self.image_x, self.image_y
        cx, cy = image_x / 2, image_y / 2
        image = np.zeros((image_y, image_x), dtype=np.float32)
        iterator = zip(self._x_list, self._y_list, self._intensity_list)
        for x, y, i in iterator:
            if self.diff_intensity_reduction is not False:
                dr = np.hypot(x - cx, y - cy)
                i = self._get_diff_intensity_reduction(dr, i)
            image[y, x] = i
        disk = morphology.disk(self.disk_r, dtype=dtype)
        image = convolve2d(image, disk, mode="same")
        if self.rotation != 0:
            image = rotate(image, self.rotation, reshape=False)
        if self.blur != 0:
            image = gaussian_filter(image, self.blur)
        if self._background_lorentz_width is not False:
            image += self._get_background_lorentz()
        if self.intensity_noise is not False:
            noise = np.random.random((image_y, image_x)) * self.intensity_noise
            image += noise
        return image 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:24,代碼來源:make_diffraction_test_data.py

示例9: elastic_transform

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def elastic_transform(image,elastic_value_x ,elastic_value_y):
    """Elastic deformation of images as described in [Simard2003]_ (with modifications JUST in Y-DIRECTION).
    .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
         Convolutional Neural Networks applied to Visual Document Analysis", in
         Proc. of the International Conference on Document Analysis and
         Recognition, 2003.

     Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5
    """
    shape = image.shape
    random_state = np.random.RandomState(None)
    nY = shape[0] // 25
    nX = shape[1] // 25
    sigma = min(shape[1], shape[0]) * 0.0025
    alpha_X = elastic_value_x * min(shape[0], shape[1])
    alpha_Y = elastic_value_y * min(shape[0], shape[1])
    dx = gaussian_filter((random_state.rand(nY, nX) * 2 - 1), sigma)
    dy = gaussian_filter((random_state.rand(nY, nX) * 2 - 1), sigma)
    x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
    dx = misc.imresize(dx, [shape[0], shape[1]], interp='bicubic')
    dy = misc.imresize(dy, [shape[0], shape[1]], interp='bicubic')
    # plt.imshow(dx, cmap=plt.cm.gray)
    # plt.show()
    dxT = []
    dyT = []
    for dummy in range(shape[2]):
        dxT.append(dx)
        dyT.append(dy)
    dx = np.dstack(dxT)
    dy = np.dstack(dyT)
    dx = dx * alpha_X
    dy = dy * alpha_Y
    indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
    image = map_coordinates(image, indices, order=1).reshape(shape)
    return image 
開發者ID:TobiasGruening,項目名稱:ARU-Net,代碼行數:37,代碼來源:util.py

示例10: smoothfill

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def smoothfill(vols, unassign, protect=None):
    """Fill using Gaussian smoothing.
    
    """
    vols = [v.astype(np.float) for v in vols]
    unassign = unassign.copy()
    if protect is None:
        protect = []
    
    try:
        next(iter(protect))
    except StopIteration:
        pass
    except TypeError:
        protect = [protect]
    noprotect = list(set(range(len(vols)))-set(protect))
    
    sum_of_unassigned = np.inf
    # for as long as the number of unassigned is changing
    while unassign.sum() < sum_of_unassigned:
        sum_of_unassigned = unassign.sum()
        for i in noprotect:
            cs = gaussian_filter(vols[i].astype(np.float),1)
            cs[vols[i]==1] = 1
            vols[i] = cs
            
        vols = binarize(vols, return_empty=True)
        unassign = vols.pop()
    
    return vols 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:32,代碼來源:hmutils.py

示例11: __call__

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def __call__(self, image):
        if isinstance(self.sigma, collections.Sequence):
            sigma = random_num_generator(
                self.sigma, random_state=self.random_state)
        else:
            sigma = self.sigma
        image = gaussian_filter(image, sigma=(sigma, sigma, 0))
        return image 
開發者ID:ozan-oktay,項目名稱:Attention-Gated-Networks,代碼行數:10,代碼來源:myImageTransformations.py

示例12: process

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def process(model, clip, path_outdata, idx):
    ''' process one clip and save the predicted saliency map '''
    with torch.no_grad():
        smap = model(clip.cuda()).cpu().data[0]

    smap = (smap.numpy()*255.).astype(np.int)/255.
    smap = gaussian_filter(smap, sigma=7)
    cv2.imwrite(os.path.join(path_outdata, '%04d.png'%(idx+1)), (smap/np.max(smap)*255.).astype(np.uint8)) 
開發者ID:MichiganCOG,項目名稱:TASED-Net,代碼行數:10,代碼來源:run_example.py

示例13: normalize_image

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def normalize_image(img, sigma=7/6):
    mu  = gaussian_filter(img, sigma, mode='nearest')
    mu_sq = mu * mu
    sigma = numpy.sqrt(numpy.abs(gaussian_filter(img * img, sigma, mode='nearest') - mu_sq))
    img_norm = (img - mu) / (sigma + 1)
    return img_norm 
開發者ID:aizvorski,項目名稱:video-quality,代碼行數:8,代碼來源:niqe.py

示例14: measure

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def measure(self, line):
        h, w = line.shape
        smoothed = filters.gaussian_filter(line, (h * 0.5, h * self.smoothness), mode='constant')
        smoothed += 0.001 * filters.uniform_filter(smoothed, (h * 0.5, w), mode='constant')
        a = np.argmax(smoothed, axis=0)
        a = filters.gaussian_filter(a, h * self.extra)
        center = np.array(a, 'i')
        deltas = abs(np.arange(h)[:, np.newaxis] - center[np.newaxis, :])
        mad = np.mean(deltas[line != 0])
        r = int(1 + self.range * mad)

        return center, r 
開發者ID:Calamari-OCR,項目名稱:calamari,代碼行數:14,代碼來源:center_normalizer.py

示例15: blur_im_list

# 需要導入模塊: from scipy.ndimage import filters [as 別名]
# 或者: from scipy.ndimage.filters import gaussian_filter [as 別名]
def blur_im_list(im_List, fwhm_x, fwhm_t):
    """Apply a gaussian filter to a list of images, with fwhm_x in radians and fwhm_t in frames. Currently only for Stokes I.

       Args:
           fwhm_x (float): circular beam size for spatial blurring in radians
           fwhm_t (float): temporal blurring in frames
       Returns:
           (Image): output image list
    """

    # Blur Stokes I
    sigma_x = fwhm_x / im_List[0].psize / (2. * np.sqrt(2. * np.log(2.)))
    sigma_t = fwhm_t / (2. * np.sqrt(2. * np.log(2.)))

    arr = np.array([im.imvec.reshape(im.ydim, im.xdim) for im in im_List])
    arr = filt.gaussian_filter(arr, (sigma_t, sigma_x, sigma_x))

    ret = []
    for j in range(len(im_List)):
        ret.append(image.Image(arr[j], im_List[0].psize, im_List[0].ra, im_List[0].dec, rf=im_List[0].rf, source=im_List[0].source, mjd=im_List[j].mjd))

    return ret

##################################################################################################
# Convenience Functions for Analytical Work
################################################################################################## 
開發者ID:achael,項目名稱:eht-imaging,代碼行數:28,代碼來源:dynamical_imaging.py


注:本文中的scipy.ndimage.filters.gaussian_filter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。