當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.distance_transform_edt方法代碼示例

本文整理匯總了Python中scipy.ndimage.distance_transform_edt方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.distance_transform_edt方法的具體用法?Python ndimage.distance_transform_edt怎麽用?Python ndimage.distance_transform_edt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.distance_transform_edt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: random_blobs

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def random_blobs(shape, blobdensity, size, roughness=2.0):
    from random import randint
    from builtins import range  # python2 compatible
    h, w = shape
    numblobs = int(blobdensity * w * h)
    mask = np.zeros((h, w), 'i')
    for i in range(numblobs):
        mask[randint(0, h-1), randint(0, w-1)] = 1
    dt = ndi.distance_transform_edt(1-mask)
    mask =  np.array(dt < size, 'f')
    mask = ndi.gaussian_filter(mask, size/(2*roughness))
    mask -= np.amin(mask)
    mask /= np.amax(mask)
    noise = np.random.rand(h, w)
    noise = ndi.gaussian_filter(noise, size/(2*roughness))
    noise -= np.amin(noise)
    noise /= np.amax(noise)
    return np.array(mask * noise > 0.5, 'f') 
開發者ID:Calamari-OCR,項目名稱:calamari,代碼行數:20,代碼來源:degrade.py

示例2: test_distance_transform_edt01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def test_distance_transform_edt01(self):
        #euclidean distance transform (edt)
        for type in self.types:
            data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0]], type)
        out, ft = ndimage.distance_transform_edt(data,
                                                     return_indices=True)
        bf = ndimage.distance_transform_bf(data, 'euclidean')
        assert_array_almost_equal(bf, out)

        dt = ft - numpy.indices(ft.shape[1:], dtype=ft.dtype)
        dt = dt.astype(numpy.float64)
        numpy.multiply(dt, dt, dt)
        dt = numpy.add.reduce(dt, axis=0)
        numpy.sqrt(dt, dt)

        assert_array_almost_equal(bf, dt) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:26,代碼來源:test_ndimage.py

示例3: test_distance_transform_edt03

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def test_distance_transform_edt03(self):
        for type in self.types:
            data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0]], type)
        ref = ndimage.distance_transform_bf(data, 'euclidean',
                                                      sampling=[2, 2])
        out = ndimage.distance_transform_edt(data,
                                                       sampling=[2, 2])
        assert_array_almost_equal(ref, out) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:test_ndimage.py

示例4: test_distance_transform_edt4

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def test_distance_transform_edt4(self):
        for type in self.types:
            data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                   [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0, 0]], type)
        ref = ndimage.distance_transform_bf(data, 'euclidean',
                                                      sampling=[2, 1])
        out = ndimage.distance_transform_edt(data,
                                                       sampling=[2, 1])
        assert_array_almost_equal(ref, out) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:test_ndimage.py

示例5: get_distance_to_nearest_keypoint

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def get_distance_to_nearest_keypoint(x1, y1, shape):
    ''' Return full-res matrix with distance to nearest keypoint in pixels
    Parameters
    ----------
        x1 : 1D vector - X coordinates of keypoints
        y1 : 1D vector - Y coordinates of keypoints
        shape : shape of image
    Returns
    -------
        dist : 2D numpy array - image with distances
    '''
    seed = np.zeros(shape, dtype=bool)
    seed[np.uint16(y1), np.uint16(x1)] = True
    dist = nd.distance_transform_edt(~seed,
                                    return_distances=True,
                                    return_indices=False)
    return dist 
開發者ID:nansencenter,項目名稱:sea_ice_drift,代碼行數:19,代碼來源:pmlib.py

示例6: test_distance_transform_edt01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def test_distance_transform_edt01(self):
        # euclidean distance transform (edt)
        for type_ in self.types:
            data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 1, 0, 0],
                                [0, 0, 0, 1, 1, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
        out, ft = ndimage.distance_transform_edt(data, return_indices=True)
        bf = ndimage.distance_transform_bf(data, 'euclidean')
        assert_array_almost_equal(bf, out)

        dt = ft - numpy.indices(ft.shape[1:], dtype=ft.dtype)
        dt = dt.astype(numpy.float64)
        numpy.multiply(dt, dt, dt)
        dt = numpy.add.reduce(dt, axis=0)
        numpy.sqrt(dt, dt)

        assert_array_almost_equal(bf, dt) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_ndimage.py

示例7: computeEvaluationMask

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def computeEvaluationMask(maskDIR, resolution, level):
    """Computes the evaluation mask.
    
    Args:
        maskDIR:    the directory of the ground truth mask
        resolution: Pixel resolution of the image at level 0
        level:      The level at which the evaluation mask is made
        
    Returns:
        evaluation_mask
    """
    slide = openslide.open_slide(maskDIR)
    dims = slide.level_dimensions[level]
    pixelarray = np.zeros(dims[0]*dims[1], dtype='uint')
    pixelarray = np.array(slide.read_region((0,0), level, dims))
    distance = nd.distance_transform_edt(255 - pixelarray[:,:,0])
    Threshold = 75/(resolution * pow(2, level) * 2) # 75µm is the equivalent size of 5 tumor cells
    binary = distance < Threshold
    filled_image = nd.morphology.binary_fill_holes(binary)
    evaluation_mask = measure.label(filled_image, connectivity = 2) 
    return evaluation_mask 
開發者ID:baidu-research,項目名稱:NCRF,代碼行數:23,代碼來源:Evaluation_FROC.py

示例8: compute_distance_map

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def compute_distance_map(seg, label=1):
    """ compute distance from label boundaries

    :param ndarray seg: integer images, typically a segmentation
    :param int label: selected singe label in segmentation
    :return ndarray:

    >>> img = np.zeros((6, 6), dtype=int)
    >>> img[1:5, 2:] = 1
    >>> dist = compute_distance_map(img)
    >>> np.round(dist, 2)
    array([[ 2.24,  1.41,  1.  ,  1.  ,  1.  ,  1.41],
           [ 2.  ,  1.  ,  0.  ,  0.  ,  0.  ,  1.  ],
           [ 2.  ,  1.  ,  0.  ,  1.  ,  1.  ,  1.41],
           [ 2.  ,  1.  ,  0.  ,  1.  ,  1.  ,  1.41],
           [ 2.  ,  1.  ,  0.  ,  0.  ,  0.  ,  1.  ],
           [ 2.24,  1.41,  1.  ,  1.  ,  1.  ,  1.41]])
    """
    contour_coord = contour_coords(seg, label)
    # logger.debug('contour coordinates {}'.format(repr(contourCoord)))
    contour_map = 1 - binary_image_from_coords(contour_coord, seg.shape)
    dist = ndimage.distance_transform_edt(contour_map)
    # logger.debug('distance map \total{}'.format(repr(dist)))
    return dist 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:26,代碼來源:labeling.py

示例9: compute_dtm

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def compute_dtm(img_gt, out_shape):
    """
    compute the distance transform map of foreground in binary mask
    input: segmentation, shape = (batch_size, x, y, z)
    output: the foreground Distance Map (SDM) 
    dtm(x) = 0; x in segmentation boundary
             inf|x-y|; x in segmentation
    """
    fg_dtm = np.zeros(out_shape)

    for b in range(out_shape[0]): # batch size
        for c in range(out_shape[1]):
            posmask = img_gt[b].astype(np.bool)
            if posmask.any():
                posdis = distance(posmask)
                fg_dtm[b][c] = posdis

    return fg_dtm 
開發者ID:JunMa11,項目名稱:SegWithDistMap,代碼行數:20,代碼來源:train_LA_Rec_FGDTM_L1PlusL2.py

示例10: compute_dtm01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def compute_dtm01(img_gt, out_shape):
    """
    compute the normalized distance transform map of foreground in binary mask
    input: segmentation, shape = (batch_size, x, y, z)
    output: the foreground Distance Map (SDM) shape=out_shape
    sdf(x) = 0; x in segmentation boundary
             inf|x-y|; x in segmentation
             0; x out of segmentation
    normalize sdf to [0, 1]
    """

    normalized_dtm = np.zeros(out_shape)

    for b in range(out_shape[0]): # batch size
            # ignore background
        for c in range(1, out_shape[1]):
            posmask = img_gt[b].astype(np.bool)
            if posmask.any():
                posdis = distance(posmask)
                normalized_dtm[b][c] = posdis/np.max(posdis)

    return normalized_dtm 
開發者ID:JunMa11,項目名稱:SegWithDistMap,代碼行數:24,代碼來源:train_LA_HD.py

示例11: compute_dtm

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def compute_dtm(img_gt, out_shape):
    """
    compute the distance transform map of foreground in binary mask
    input: segmentation, shape = (batch_size, x, y, z)
    output: the foreground Distance Map (SDM) 
    dtm(x) = 0; x in segmentation boundary
             inf|x-y|; x in segmentation
    """

    fg_dtm = np.zeros(out_shape)

    for b in range(out_shape[0]): # batch size
        for c in range(1, out_shape[1]):
            posmask = img_gt[b].astype(np.bool)
            if posmask.any():
                posdis = distance(posmask)
                fg_dtm[b][c] = posdis

    return fg_dtm 
開發者ID:JunMa11,項目名稱:SegWithDistMap,代碼行數:21,代碼來源:train_LA_HD.py

示例12: hd_loss

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def hd_loss(seg_soft, gt, seg_dtm, gt_dtm):
    """
    compute huasdorff distance loss for binary segmentation
    input: seg_soft: softmax results,  shape=(b,2,x,y,z)
           gt: ground truth, shape=(b,x,y,z)
           seg_dtm: segmentation distance transform map; shape=(b,2,x,y,z)
           gt_dtm: ground truth distance transform map; shape=(b,2,x,y,z)
    output: boundary_loss; sclar
    """

    delta_s = (seg_soft[:,1,...] - gt.float()) ** 2
    s_dtm = seg_dtm[:,1,...] ** 2
    g_dtm = gt_dtm[:,1,...] ** 2
    dtm = s_dtm + g_dtm
    multipled = torch.einsum('bxyz, bxyz->bxyz', delta_s, dtm)
    hd_loss = multipled.mean()

    return hd_loss 
開發者ID:JunMa11,項目名稱:SegWithDistMap,代碼行數:20,代碼來源:train_LA_HD.py

示例13: compute_dtm

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def compute_dtm(img_gt, out_shape):
    """
    compute the distance transform map of foreground in binary mask
    input: segmentation, shape = (batch_size, x, y, z);
           out_shape = (batch_size, 1, x, y, z)
    output: the foreground Distance Map (SDM) 
    dtm(x) = 0; x in segmentation boundary
             inf|x-y|; x in segmentation
    """
    fg_dtm = np.zeros(out_shape)

    for b in range(out_shape[0]): # batch size
        for c in range(out_shape[1]):
            posmask = img_gt[b].astype(np.bool)
            if posmask.any():
                posdis = distance(posmask)
                fg_dtm[b][c] = posdis

    return fg_dtm 
開發者ID:JunMa11,項目名稱:SegWithDistMap,代碼行數:21,代碼來源:train_LA_Rec_FGDTM_L2.py

示例14: compute_dtm

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def compute_dtm(img_gt, out_shape):
    """
    compute the distance transform map of foreground in binary mask
    input: segmentation, shape = (batch_size, x, y, z)
    output: the foreground Distance Map (SDM) 
    dtm(x) = 0; x in segmentation boundary
             inf|x-y|; x in segmentation
    """

    fg_dtm = np.zeros(out_shape)

    for b in range(out_shape[0]): # batch size
        for c in range(out_shape[1]):
            posmask = img_gt[b].astype(np.bool)
            if posmask.any():
                posdis = distance(posmask)
                fg_dtm[b][c] = posdis

    return fg_dtm 
開發者ID:JunMa11,項目名稱:SegWithDistMap,代碼行數:21,代碼來源:train_LA_MultiHead_FGDTM_L1.py

示例15: get_image_area_to_sample

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import distance_transform_edt [as 別名]
def get_image_area_to_sample(img):
  """
  calculate set g_c, which has two properties
  1) They represent background pixels 
  2) They are within a certain distance to the object
  :param img: Image that represents the object instance
  """

  #TODO: In the paper 'Deep Interactive Object Selection', they calculate g_c first based on the original object instead
  # of the dilated one.

  # Dilate the object by d_margin pixels to extend the object boundary
  img_area = np.copy(img)
  img_area = morphology.binary_dilation(img_area, morphology.diamond(D_MARGIN)).astype(np.uint8)

  g_c = np.logical_not(img_area).astype(int)
  g_c[np.where(distance_transform_edt(g_c) > D)] = 0

  return g_c 
開發者ID:JonathonLuiten,項目名稱:PReMVOS,代碼行數:21,代碼來源:Util.py


注:本文中的scipy.ndimage.distance_transform_edt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。