本文整理匯總了Python中scipy.ndimage.convolve方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.convolve方法的具體用法?Python ndimage.convolve怎麽用?Python ndimage.convolve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.ndimage
的用法示例。
在下文中一共展示了ndimage.convolve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pyconv3d
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def pyconv3d(signals, filters):
Ns, Ts, C, Hs, Ws = signals.shape
Nf, Tf, C, Hf, Wf = filters.shape
Tf2 = Tf//2
Hf2 = Hf//2
Wf2 = Wf//2
rval = numpy.zeros((Ns, Ts-Tf+1, Nf, Hs-Hf+1, Ws-Wf+1))
for ns in xrange(Ns):
for nf in xrange(Nf):
for c in xrange(C):
s_i = signals[ns, :, c, :, :]
f_i = filters[nf, :, c, :, :]
r_i = rval[ns, :, nf, :, :]
o_i = ndimage.convolve(s_i, f_i, mode='constant', cval=1)
o_i_sh0 = o_i.shape[0]
# print s_i.shape, f_i.shape, r_i.shape, o_i.shape
r_i += o_i[Tf2:o_i_sh0-Tf2, Hf2:-Hf2, Wf2:-Wf2]
return rval
示例2: high_pass_filter
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def high_pass_filter(input_image, output_image):
I = imread(input_image)
if len(I.shape)==3:
kernel = np.array([[[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]],
[[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]],
[[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]]])
else:
kernel = np.array([[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]])
If = ndimage.convolve(I, kernel)
imsave(output_image, If)
# }}}
# {{{ low_pass_filter()
示例3: test_correlate01
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def test_correlate01(self):
array = numpy.array([1, 2])
weights = numpy.array([2])
expected = [2, 4]
output = ndimage.correlate(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.correlate1d(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve1d(array, weights)
assert_array_almost_equal(output, expected)
示例4: test_correlate03
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def test_correlate03(self):
array = numpy.array([1])
weights = numpy.array([1, 1])
expected = [2]
output = ndimage.correlate(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.correlate1d(array, weights)
assert_array_almost_equal(output, expected)
output = ndimage.convolve1d(array, weights)
assert_array_almost_equal(output, expected)
示例5: test_correlate13
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def test_correlate13(self):
kernel = numpy.array([[1, 0],
[0, 1]])
for type1 in self.types:
array = numpy.array([[1, 2, 3],
[4, 5, 6]], type1)
for type2 in self.types:
output = ndimage.correlate(array, kernel,
output=type2)
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
assert_equal(output.dtype.type, type2)
output = ndimage.convolve(array, kernel,
output=type2)
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
assert_equal(output.dtype.type, type2)
示例6: test_correlate14
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def test_correlate14(self):
kernel = numpy.array([[1, 0],
[0, 1]])
for type1 in self.types:
array = numpy.array([[1, 2, 3],
[4, 5, 6]], type1)
for type2 in self.types:
output = numpy.zeros(array.shape, type2)
ndimage.correlate(array, kernel,
output=output)
assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
assert_equal(output.dtype.type, type2)
ndimage.convolve(array, kernel, output=output)
assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
assert_equal(output.dtype.type, type2)
示例7: test_correlate19
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def test_correlate19(self):
kernel = numpy.array([[1, 0],
[0, 1]])
for type1 in self.types:
array = numpy.array([[1, 2, 3],
[4, 5, 6]], type1)
output = ndimage.correlate(array, kernel,
output=numpy.float32,
mode='nearest', origin=[-1, 0])
assert_array_almost_equal([[5, 6, 8], [8, 9, 11]], output)
assert_equal(output.dtype.type, numpy.float32)
output = ndimage.convolve(array, kernel,
output=numpy.float32,
mode='nearest', origin=[-1, 0])
assert_array_almost_equal([[3, 5, 6], [6, 8, 9]], output)
assert_equal(output.dtype.type, numpy.float32)
示例8: low_pass_filter
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def low_pass_filter(input_image, output_image):
I = imread(input_image)
if len(I.shape)==3:
kernel = np.array([[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]],
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]],
[[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]])
else:
kernel = np.array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
kernel = kernel.astype('float32')/9
If = ndimage.convolve(I, kernel)
imsave(output_image, If)
# }}}
# {{{ imgdiff()
示例9: get_ini_cor
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def get_ini_cor(cor_img, d1=21, d2=3):
cor = convolve(cor_img, np.ones((d1, d1)), mode='constant', cval=0.0)
cor_id = []
X_loc = find_N_peaks(cor.sum(0), prominence=None,
distance=20, N=4)[0]
for x in X_loc:
x_ = int(np.round(x))
V_signal = cor[:, max(0, x_-d2):x_+d2+1].sum(1)
y1, y2 = find_N_peaks(V_signal, prominence=None,
distance=20, N=2)[0]
cor_id.append((x, y1))
cor_id.append((x, y2))
cor_id = np.array(cor_id, np.float64)
return cor_id
示例10: circular_conv
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def circular_conv(signal1, signal2):
"""takes two 1D numpy array and do a circular convolution with them
inputs :
- signal1 : 1D numpy array
- signal2 : 1D numpy array, same length as signal1
output :
- signal_conv : 1D numpy array, result of circular convolution of signal1 and signal2"""
if signal1.shape != signal2.shape:
raise Exception("The two signals for circular convolution do not have the same shape")
signal2_extended = np.concatenate((signal2, signal2, signal2)) # replicate signal at both ends
signal_conv_extended = np.convolve(signal1, signal2_extended, mode="same") # median filtering
signal_conv = signal_conv_extended[len(signal1):2*len(signal1)] # truncate back the signal
return signal_conv
示例11: ApplyAtoms
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def ApplyAtoms(V,D,scale):
out=[]
for s in xrange(scale):
if s!=0:
print('scale='+str(s))
V = pyr.pyramid_reduce_3d(V,downscale=2) # reduce the volume. e.g. from 512^3 to 256^3
else: print('scale=0')
for i in xrange(len(D)):
print('s:'+str(s)+' i:'+str(i))
conv = nd.convolve(V, D[i], mode='constant', cval=0.0)
if s==0:
out.append(conv)
else:
upscaled = pyr.pyramid_expand_3d(conv, upscale=2**s)
out.append(upscaled)
out=np.array(out)
return out
示例12: get_data
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def get_data(self):
image_iter = self.ds_images.get_data()
psf_iter = self.ds_psf.get_data()
for dp_image in image_iter:
# sample camera shake kernel
dp_psf = next(psf_iter)
# synthesize ego-motion
for t, k in enumerate(dp_psf):
blurry = dp_image[t]
for c in range(3):
blurry[:, :, c] = ndimage.convolve(blurry[:, :, c], k, mode='constant', cval=0.0)
dp_image[t] = blurry
yield dp_image
示例13: compute_img_filter_response2d
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def compute_img_filter_response2d(img, filter_battery):
""" compute image filter response in 2D
:param [[float]] img: image
:param [[[float]]] filter_battery: filters
:return [[float]]:
"""
if filter_battery.ndim != 3:
raise ValueError('wrong battery dim %r' % filter_battery.shape)
responses = np.array([ndimage.convolve(img, fl) for fl in filter_battery])
if filter_battery.shape[0] > 1:
# usually for rotational edge detectors and we tae the maximal response
response = np.max(responses, axis=0)
else:
response = responses[0]
return response
示例14: convolve_mask
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def convolve_mask(data, ksize=3, kernel=None, copy=True):
"""
Convolve data over the missing regions of a mask
Parameters
----------
data : masked array_like
Input field.
ksize : int, optional
Size of square kernel
kernel : ndarray, optional
Define a convolution kernel. Default is averaging
copy : bool, optional
If true, a copy of input array is made
Returns
-------
fld : masked array
"""
return convolve(data, ksize, kernel, copy, True)
示例15: compute_gabor
# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import convolve [as 別名]
def compute_gabor(img, params):
if not params["shared_dict"].get("gabor_kernels", False):
gabor_theta = int(params.get("gabor_theta", 4))
gabor_sigma = make_tuple(params.get("gabor_sigma", "(1,3)"))
gabor_frequency = make_tuple(params.get("gabor_frequency", "(0.05, 0.25)"))
kernels = []
for theta in range(gabor_theta):
theta = theta / 4. * np.pi
for sigma in gabor_sigma:
for frequency in gabor_frequency:
kernel = np.real(gabor_kernel(frequency, theta=theta,
sigma_x=sigma, sigma_y=sigma))
kernels.append(kernel)
params["shared_dict"]["gabor_kernels"] = kernels
kernels = params["shared_dict"]["gabor_kernels"]
imgg = rgb2gray(img)
feats = np.zeros((imgg.shape[0], imgg.shape[1], len(kernels)), dtype=np.double)
for k, kernel in enumerate(kernels):
filtered = ndi.convolve(imgg, kernel, mode='wrap')
feats[:, :, k] = filtered
return feats