當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.binary_fill_holes方法代碼示例

本文整理匯總了Python中scipy.ndimage.binary_fill_holes方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.binary_fill_holes方法的具體用法?Python ndimage.binary_fill_holes怎麽用?Python ndimage.binary_fill_holes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.binary_fill_holes方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_binary_fill_holes02

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def test_binary_fill_holes02(self):
        expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 0, 1, 1, 0, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 0, 1, 1, 0, 0, 0],
                               [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 0, 1, 1, 0, 0, 0],
                               [0, 0, 1, 0, 0, 1, 0, 0],
                               [0, 0, 1, 0, 0, 1, 0, 0],
                               [0, 0, 1, 0, 0, 1, 0, 0],
                               [0, 0, 0, 1, 1, 0, 0, 0],
                               [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        out = ndimage.binary_fill_holes(data)
        assert_array_almost_equal(out, expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_ndimage.py

示例2: test_binary_fill_holes03

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def test_binary_fill_holes03(self):
        expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 1, 0, 0, 0, 0, 0],
                               [0, 1, 1, 1, 0, 1, 1, 1],
                               [0, 1, 1, 1, 0, 1, 1, 1],
                               [0, 1, 1, 1, 0, 1, 1, 1],
                               [0, 0, 1, 0, 0, 1, 1, 1],
                               [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 1, 0, 0, 0, 0, 0],
                               [0, 1, 0, 1, 0, 1, 1, 1],
                               [0, 1, 0, 1, 0, 1, 0, 1],
                               [0, 1, 0, 1, 0, 1, 0, 1],
                               [0, 0, 1, 0, 0, 1, 1, 1],
                               [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        out = ndimage.binary_fill_holes(data)
        assert_array_almost_equal(out, expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_ndimage.py

示例3: test_binary_fill_holes01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def test_binary_fill_holes01(self):
        expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 1, 0, 0, 1, 0, 0],
                               [0, 0, 1, 0, 0, 1, 0, 0],
                               [0, 0, 1, 0, 0, 1, 0, 0],
                               [0, 0, 1, 1, 1, 1, 0, 0],
                               [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        out = ndimage.binary_fill_holes(data)
        assert_array_almost_equal(out, expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_ndimage.py

示例4: test_binary_fill_holes01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def test_binary_fill_holes01(self):
        expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                            [0, 0, 1, 1, 1, 1, 0, 0],
                            [0, 0, 1, 0, 0, 1, 0, 0],
                            [0, 0, 1, 0, 0, 1, 0, 0],
                            [0, 0, 1, 0, 0, 1, 0, 0],
                            [0, 0, 1, 1, 1, 1, 0, 0],
                            [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        out = ndimage.binary_fill_holes(data)
        assert_array_almost_equal(out, expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_ndimage.py

示例5: test_binary_fill_holes02

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def test_binary_fill_holes02(self):
        expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 0, 1, 1, 0, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 1, 1, 1, 1, 0, 0],
                                [0, 0, 0, 1, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                            [0, 0, 0, 1, 1, 0, 0, 0],
                            [0, 0, 1, 0, 0, 1, 0, 0],
                            [0, 0, 1, 0, 0, 1, 0, 0],
                            [0, 0, 1, 0, 0, 1, 0, 0],
                            [0, 0, 0, 1, 1, 0, 0, 0],
                            [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        out = ndimage.binary_fill_holes(data)
        assert_array_almost_equal(out, expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_ndimage.py

示例6: test_binary_fill_holes03

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def test_binary_fill_holes03(self):
        expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                                [0, 0, 1, 0, 0, 0, 0, 0],
                                [0, 1, 1, 1, 0, 1, 1, 1],
                                [0, 1, 1, 1, 0, 1, 1, 1],
                                [0, 1, 1, 1, 0, 1, 1, 1],
                                [0, 0, 1, 0, 0, 1, 1, 1],
                                [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
                            [0, 0, 1, 0, 0, 0, 0, 0],
                            [0, 1, 0, 1, 0, 1, 1, 1],
                            [0, 1, 0, 1, 0, 1, 0, 1],
                            [0, 1, 0, 1, 0, 1, 0, 1],
                            [0, 0, 1, 0, 0, 1, 1, 1],
                            [0, 0, 0, 0, 0, 0, 0, 0]], bool)
        out = ndimage.binary_fill_holes(data)
        assert_array_almost_equal(out, expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_ndimage.py

示例7: fill_tissue_holes

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def fill_tissue_holes(bw_img):
    """ Filling holes in tissue image
    Parameters
    ----------
    bw_img : np.array
        2D binary image.
    Returns
    -------
    bw_fill: np.array
        Binary image with no holes
    """

    # Fill holes
    bw_fill = binary_fill_holes(bw_img)

    return bw_fill 
開發者ID:PingjunChen,項目名稱:tissueloc,代碼行數:18,代碼來源:locate_tissue.py

示例8: simple_bodymask

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def simple_bodymask(img):
    maskthreshold = -500
    oshape = img.shape
    img = ndimage.zoom(img, 128/np.asarray(img.shape), order=0)
    bodymask = img > maskthreshold
    bodymask = ndimage.binary_closing(bodymask)
    bodymask = ndimage.binary_fill_holes(bodymask, structure=np.ones((3, 3))).astype(int)
    bodymask = ndimage.binary_erosion(bodymask, iterations=2)
    bodymask = skimage.measure.label(bodymask.astype(int), connectivity=1)
    regions = skimage.measure.regionprops(bodymask.astype(int))
    if len(regions) > 0:
        max_region = np.argmax(list(map(lambda x: x.area, regions))) + 1
        bodymask = bodymask == max_region
        bodymask = ndimage.binary_dilation(bodymask, iterations=2)
    real_scaling = np.asarray(oshape)/128
    return ndimage.zoom(bodymask, real_scaling, order=0) 
開發者ID:JoHof,項目名稱:lungmask,代碼行數:18,代碼來源:utils.py

示例9: _find_field_centroid

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def _find_field_centroid(self) -> Tuple[Point, List]:
        """Find the centroid of the radiation field based on a 50% height threshold.

        Returns
        -------
        p
            The CAX point location.
        edges
            The bounding box of the field, plus a small margin.
        """
        min, max = np.percentile(self.array, [5, 99.9])
        threshold_img = self.as_binary((max - min)/2 + min)
        filled_img = ndimage.binary_fill_holes(threshold_img)
        # clean single-pixel noise from outside field
        cleaned_img = ndimage.binary_erosion(threshold_img)
        [*edges] = bounding_box(cleaned_img)
        edges[0] -= 10
        edges[1] += 10
        edges[2] -= 10
        edges[3] += 10
        coords = ndimage.measurements.center_of_mass(filled_img)
        p = Point(x=coords[-1], y=coords[0])
        return p, edges 
開發者ID:jrkerns,項目名稱:pylinac,代碼行數:25,代碼來源:winston_lutz.py

示例10: patch_up_roi

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def patch_up_roi(roi):
    """
    After being non-linearly transformed, ROIs tend to have holes in them.
    We perform a couple of computational geometry operations on the ROI to
    fix that up.

    Parameters
    ----------
    roi : 3D binary array
        The ROI after it has been transformed.

    sigma : float
        The sigma for initial Gaussian smoothing.

    truncate : float
        The truncation for the Gaussian

    Returns
    -------
    ROI after dilation and hole-filling
    """

    hole_filled = ndim.binary_fill_holes(roi > 0)
    try:
        return convex_hull_image(hole_filled)
    except QhullError:
        return hole_filled 
開發者ID:yeatmanlab,項目名稱:pyAFQ,代碼行數:29,代碼來源:volume.py

示例11: clean_mask

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def clean_mask(m, c):
    # threshold
    m_thresh = threshold_otsu(m)
    c_thresh = threshold_otsu(c)
    m_b = m > m_thresh
    c_b = c > c_thresh

    # combine contours and masks and fill the cells
    m_ = np.where(m_b | c_b, 1, 0)
    m_ = ndi.binary_fill_holes(m_)

    # close what wasn't closed before
    area, radius = mean_blob_size(m_b)
    struct_size = int(1.25 * radius)
    struct_el = morph.disk(struct_size)
    m_padded = pad_mask(m_, pad=struct_size)
    m_padded = morph.binary_closing(m_padded, selem=struct_el)
    m_ = crop_mask(m_padded, crop=struct_size)

    # open to cut the real cells from the artifacts
    area, radius = mean_blob_size(m_b)
    struct_size = int(0.75 * radius)
    struct_el = morph.disk(struct_size)
    m_ = np.where(c_b & (~m_b), 0, m_)
    m_padded = pad_mask(m_, pad=struct_size)
    m_padded = morph.binary_opening(m_padded, selem=struct_el)
    m_ = crop_mask(m_padded, crop=struct_size)

    # join the connected cells with what we had at the beginning
    m_ = np.where(m_b | m_, 1, 0)
    m_ = ndi.binary_fill_holes(m_)

    # drop all the cells that weren't present at least in 25% of area in the initial mask
    m_ = drop_artifacts(m_, m_b, min_coverage=0.25)

    return m_ 
開發者ID:minerva-ml,項目名稱:open-solution-data-science-bowl-2018,代碼行數:38,代碼來源:postprocessing.py

示例12: fill_holes_per_blob

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def fill_holes_per_blob(image):
    image_cleaned = np.zeros_like(image)
    for i in range(1, image.max() + 1):
        mask = np.where(image == i, 1, 0)
        mask = ndi.morphology.binary_fill_holes(mask)
        image_cleaned = image_cleaned + mask * i
    return image_cleaned 
開發者ID:minerva-ml,項目名稱:open-solution-data-science-bowl-2018,代碼行數:9,代碼來源:postprocessing.py

示例13: post_processing

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def post_processing(prediction):
    prediction = nd.binary_fill_holes(prediction)
    label_cc, num_cc = measure.label(prediction,return_num=True)
    total_cc = np.sum(prediction)
    measure.regionprops(label_cc)
    for cc in range(1,num_cc+1):
        single_cc = (label_cc==cc)
        single_vol = np.sum(single_cc)
        if single_vol/total_cc<0.2:
            prediction[single_cc]=0

    return prediction 
開發者ID:JunMa11,項目名稱:SegWithDistMap,代碼行數:14,代碼來源:utils.py

示例14: binarize_volume

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def binarize_volume(vol, t, minvol=0, fill=False):
    mask = vol >= t
    if minvol != 0:
        mask = binary_volume_opening(mask, minvol)
    if fill:
        mask = binary_fill_holes(mask)
    return mask 
開發者ID:asarnow,項目名稱:pyem,代碼行數:9,代碼來源:binary.py

示例15: create_nonzero_mask

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_fill_holes [as 別名]
def create_nonzero_mask(data):
    from scipy.ndimage import binary_fill_holes
    assert len(data.shape) == 4 or len(data.shape) == 3, "data must have shape (C, X, Y, Z) or shape (C, X, Y)"
    nonzero_mask = np.zeros(data.shape[1:], dtype=bool)
    for c in range(data.shape[0]):
        this_mask = data[c] != 0
        nonzero_mask = nonzero_mask | this_mask
    nonzero_mask = binary_fill_holes(nonzero_mask)
    return nonzero_mask 
開發者ID:MIC-DKFZ,項目名稱:nnUNet,代碼行數:11,代碼來源:cropping.py


注:本文中的scipy.ndimage.binary_fill_holes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。