當前位置: 首頁>>代碼示例>>Python>>正文


Python ndimage.binary_closing方法代碼示例

本文整理匯總了Python中scipy.ndimage.binary_closing方法的典型用法代碼示例。如果您正苦於以下問題:Python ndimage.binary_closing方法的具體用法?Python ndimage.binary_closing怎麽用?Python ndimage.binary_closing使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.ndimage的用法示例。


在下文中一共展示了ndimage.binary_closing方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_binary_closing01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def test_binary_closing01(self):
        expected = [[0, 0, 0, 0, 0, 0, 0, 0],
                [0, 1, 1, 0, 0, 0, 0, 0],
                [0, 1, 1, 1, 0, 1, 0, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1, 1, 0, 0],
                [0, 1, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 0, 0, 1, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0]]
        for type in self.types:
            data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
                                   [1, 1, 1, 0, 0, 0, 0, 0],
                                   [0, 1, 0, 0, 0, 1, 0, 0],
                                   [0, 0, 0, 1, 1, 1, 1, 0],
                                   [0, 0, 1, 1, 0, 1, 0, 0],
                                   [0, 1, 1, 1, 1, 1, 1, 0],
                                   [0, 0, 1, 0, 0, 1, 0, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0]], type)
            out = ndimage.binary_closing(data)
            assert_array_almost_equal(out, expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:22,代碼來源:test_ndimage.py

示例2: test_binary_closing02

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def test_binary_closing02(self):
        struct = ndimage.generate_binary_structure(2, 2)
        expected = [[0, 0, 0, 0, 0, 0, 0, 0],
                [0, 1, 1, 0, 0, 0, 0, 0],
                [0, 1, 1, 1, 1, 1, 1, 0],
                [0, 1, 1, 1, 1, 1, 1, 0],
                [0, 1, 1, 1, 1, 1, 1, 0],
                [0, 1, 1, 1, 1, 1, 1, 0],
                [0, 1, 1, 1, 1, 1, 1, 0],
                [0, 0, 0, 0, 0, 0, 0, 0]]
        for type in self.types:
            data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0],
                                   [1, 1, 1, 0, 0, 0, 0, 0],
                                   [1, 1, 1, 1, 1, 1, 1, 0],
                                   [0, 0, 1, 1, 1, 1, 1, 0],
                                   [0, 1, 1, 1, 0, 1, 1, 0],
                                   [0, 1, 1, 1, 1, 1, 1, 0],
                                   [0, 1, 1, 1, 1, 1, 1, 0],
                                   [0, 0, 0, 0, 0, 0, 0, 0]], type)
            out = ndimage.binary_closing(data, struct)
            assert_array_almost_equal(out, expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:23,代碼來源:test_ndimage.py

示例3: process_failure

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def process_failure(name):
    name = name.replace("mask","truth")
    name2 = name.replace("truth","")
    image,_,_ = image_read_write.load_itk_image(name2)
    #image_cropped = image[:,120:420,60:460]
    image_mask = np.zeros(image.shape)
    center = 256
    cc,rr = circle(center+20,center,160)
    image_mask[:,cc,rr] = 1
    image[image>threshold]=0
    image[image!=0]=1
    image = image*image_mask
    #image_cropped[image_cropped>threshold]=0
    #image_cropped[image_cropped!=0]=1

    kernel20 = np.zeros((15,15))
    cc,rr = circle(7,7,8)
    kernel20[cc,rr]=1
    image = binary_closing(image, [kernel20],1)
    #image[:,:,:]=0
    #image[:,120:420,60:460]=image_cropped
    truth,_,_ = image_read_write.load_itk_image(name)
    print evaluator.calculate_dice(image,truth,name)
    image = np.array(image,dtype=np.int8)
    #LoadImages.save_itk(image,name) 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:27,代碼來源:volume.py

示例4: test_binary_closing01

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def test_binary_closing01(self):
        expected = [[0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 1, 1, 0, 0, 0, 0, 0],
                    [0, 1, 1, 1, 0, 1, 0, 0],
                    [0, 0, 1, 1, 1, 1, 1, 0],
                    [0, 0, 1, 1, 1, 1, 0, 0],
                    [0, 1, 1, 1, 1, 1, 1, 0],
                    [0, 0, 1, 0, 0, 1, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0]]
        for type_ in self.types:
            data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
                                [1, 1, 1, 0, 0, 0, 0, 0],
                                [0, 1, 0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 1, 1, 1, 1, 0],
                                [0, 0, 1, 1, 0, 1, 0, 0],
                                [0, 1, 1, 1, 1, 1, 1, 0],
                                [0, 0, 1, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0]], type_)
            out = ndimage.binary_closing(data)
            assert_array_almost_equal(out, expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_ndimage.py

示例5: test_binary_closing02

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def test_binary_closing02(self):
        struct = ndimage.generate_binary_structure(2, 2)
        expected = [[0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 1, 1, 0, 0, 0, 0, 0],
                    [0, 1, 1, 1, 1, 1, 1, 0],
                    [0, 1, 1, 1, 1, 1, 1, 0],
                    [0, 1, 1, 1, 1, 1, 1, 0],
                    [0, 1, 1, 1, 1, 1, 1, 0],
                    [0, 1, 1, 1, 1, 1, 1, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0]]
        for type_ in self.types:
            data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0],
                                [1, 1, 1, 0, 0, 0, 0, 0],
                                [1, 1, 1, 1, 1, 1, 1, 0],
                                [0, 0, 1, 1, 1, 1, 1, 0],
                                [0, 1, 1, 1, 0, 1, 1, 0],
                                [0, 1, 1, 1, 1, 1, 1, 0],
                                [0, 1, 1, 1, 1, 1, 1, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0]], type_)
            out = ndimage.binary_closing(data, struct)
            assert_array_almost_equal(out, expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:23,代碼來源:test_ndimage.py

示例6: simple_bodymask

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def simple_bodymask(img):
    maskthreshold = -500
    oshape = img.shape
    img = ndimage.zoom(img, 128/np.asarray(img.shape), order=0)
    bodymask = img > maskthreshold
    bodymask = ndimage.binary_closing(bodymask)
    bodymask = ndimage.binary_fill_holes(bodymask, structure=np.ones((3, 3))).astype(int)
    bodymask = ndimage.binary_erosion(bodymask, iterations=2)
    bodymask = skimage.measure.label(bodymask.astype(int), connectivity=1)
    regions = skimage.measure.regionprops(bodymask.astype(int))
    if len(regions) > 0:
        max_region = np.argmax(list(map(lambda x: x.area, regions))) + 1
        bodymask = bodymask == max_region
        bodymask = ndimage.binary_dilation(bodymask, iterations=2)
    real_scaling = np.asarray(oshape)/128
    return ndimage.zoom(bodymask, real_scaling, order=0) 
開發者ID:JoHof,項目名稱:lungmask,代碼行數:18,代碼來源:utils.py

示例7: calc_hist

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def calc_hist(self, ):
        hist_ = np.sum(self.imgarr, axis=1).astype('float')
        hist_mean = np.mean(hist_)
        self.fft = abs(np.fft.rfft(hist_ - hist_mean))
        max_harm = int(np.argmax(self.fft))
        self.best_harmonic = self.ht // (1 + max_harm)
        assert max_harm > 0

        self.closed = nd.binary_closing(self.imgarr, structure=np.ones((1, self.best_harmonic // 4)))
        self.hist = np.sum(self.closed, axis=1).astype("float")
        self.gauss_hist = nd.filters.gaussian_filter1d(
            self.hist,
            self.best_harmonic / 16, mode='constant',
            cval=0,
            truncate=2.0)
        self.d_gauss_hist = nd.filters.convolve(self.gauss_hist, [-1, 0, 1]) 
開發者ID:rakeshvar,項目名稱:chamanti_ocr,代碼行數:18,代碼來源:line_seperate.py

示例8: get_uv_mask

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def get_uv_mask(vertices_vis, triangles, uv_coords, h, w, resolution):
    triangles = triangles.T
    vertices_vis = vertices_vis.astype(np.float32)
    uv_mask = render_texture(uv_coords.T, vertices_vis[np.newaxis, :], triangles, resolution, resolution, 1)
    uv_mask = np.squeeze(uv_mask > 0)
    uv_mask = ndimage.binary_closing(uv_mask)
    uv_mask = ndimage.binary_erosion(uv_mask, structure = np.ones((4,4)))  
    uv_mask = ndimage.binary_closing(uv_mask)
    uv_mask = ndimage.binary_erosion(uv_mask, structure = np.ones((4,4)))  
    uv_mask = ndimage.binary_erosion(uv_mask, structure = np.ones((4,4)))  
    uv_mask = ndimage.binary_erosion(uv_mask, structure = np.ones((4,4)))  
    uv_mask = uv_mask.astype(np.float32)

    return np.squeeze(uv_mask) 
開發者ID:joseph-zhong,項目名稱:LipReading,代碼行數:16,代碼來源:render_app.py

示例9: process_image

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def process_image(name, do_closing, closing_structure):
    image_train,_,_ = image_read_write.load_itk_image(name)
    name = name.replace("mask","truth")
    image_truth,_,_ = image_read_write.load_itk_image(name)
    truth = np.zeros(image_truth.shape, dtype=np.uint8)
    truth[image_truth >0]=1
    if do_closing:
        image_train = binary_closing(image_train, closing_structure,1)

    image_train = binary_closing(image_train, [[[1]],[[1]],[[1]],[[1]],[[1]]],1)

    score = calculate_dice(image_train,truth, name)

    return score 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:16,代碼來源:evaluate_segmentation.py

示例10: setup_method

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def setup_method(self):
        a = numpy.zeros((5,5), dtype=bool)
        a[1:4, 1:4] = True
        a[4,4] = True
        self.array = a
        self.sq3x3 = numpy.ones((3,3))
        self.opened_old = ndimage.binary_opening(self.array, self.sq3x3,
                                                 1, None, 0)
        self.closed_old = ndimage.binary_closing(self.array, self.sq3x3,
                                                 1, None, 0) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:test_ndimage.py

示例11: test_closing_new_arguments

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def test_closing_new_arguments(self):
        closed_new = ndimage.binary_closing(self.array, self.sq3x3, 1, None,
                                            0, None, 0, False)
        assert_array_equal(closed_new, self.closed_old) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:6,代碼來源:test_ndimage.py

示例12: find_facade_cuts

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def find_facade_cuts(facade_sig, dilation_amount=60):
    edges = facade_sig > facade_sig.mean() + facade_sig.std()
    edges = binary_closing(edges, structure=np.ones(dilation_amount))
    run, start, val = run_length_encode(edges)
    result = []
    for s, e in zip(start[val], start[val] + run[val]):
        result.append(s + facade_sig[s:e].argmax())
    result = [0] + result + [len(facade_sig) - 1]
    result = np.unique(result)
    return np.array(result) 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:12,代碼來源:megafacade.py

示例13: background_mask

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def background_mask(mri, thresh_perc=1):
    """Creates the background mask from an MRI"""

    grad_magnitude = gradient_magnitude(mri)
    nonzero_grad_mag = grad_magnitude[grad_magnitude > 0]

    thresh_val = np.percentile(nonzero_grad_mag.flatten(), thresh_perc)
    background_mask = grad_magnitude < thresh_val

    se36 = ndimage.generate_binary_structure(3, 6)
    closed = ndimage.binary_closing(background_mask, se36, iterations=6)
    final_mask = ndimage.binary_erosion(closed, se36, iterations=5)

    return final_mask 
開發者ID:raamana,項目名稱:visualqc,代碼行數:16,代碼來源:image_utils.py

示例14: crop_and_resize

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def crop_and_resize(img, mask=None, width=192, height=192):
    bmask = simple_bodymask(img)
    # img[bmask==0] = -1024 # this line removes background outside of the lung.
    # However, it has been shown problematic with narrow circular field of views that touch the lung.
    # Possibly doing more harm than help
    reg = skimage.measure.regionprops(skimage.measure.label(bmask))
    if len(reg) > 0:
        bbox = np.asarray(reg[0].bbox)
    else:
        bbox = (0, 0, bmask.shape[0], bmask.shape[1])
    img = img[bbox[0]:bbox[2], bbox[1]:bbox[3]]
    img = ndimage.zoom(img, np.asarray([width, height]) / np.asarray(img.shape), order=1)
    if not mask is None:
        mask = mask[bbox[0]:bbox[2], bbox[1]:bbox[3]]
        mask = ndimage.zoom(mask, np.asarray([width, height]) / np.asarray(mask.shape), order=0)
        # mask = ndimage.binary_closing(mask,iterations=5)
    return img, mask, bbox


## For some reasons skimage.transform leads to edgy mask borders compared to ndimage.zoom
# def reshape_mask(mask, tbox, origsize):
#     res = np.ones(origsize) * 0
#     resize = [tbox[2] - tbox[0], tbox[3] - tbox[1]]
#     imgres = skimage.transform.resize(mask, resize, order=0, mode='constant', cval=0, anti_aliasing=False, preserve_range=True)
#     res[tbox[0]:tbox[2], tbox[1]:tbox[3]] = imgres
#     return res 
開發者ID:JoHof,項目名稱:lungmask,代碼行數:28,代碼來源:utils.py

示例15: main

# 需要導入模塊: from scipy import ndimage [as 別名]
# 或者: from scipy.ndimage import binary_closing [as 別名]
def main(args):
    if args.threshold is None:
        print("Please provide a binarization threshold")
        return 1
    data, hdr = read(args.input, inc_header=True)
    mask = binarize_volume(data, args.threshold, minvol=args.minvol, fill=args.fill)
    if args.base_map is not None:
        base_map = read(args.base_map, inc_header=False)
        base_mask = binarize_volume(base_map, args.threshold, minvol=args.minvol, fill=args.fill)
        total_width = args.extend + args.edge_width
        excl_mask = binary_dilate(mask, total_width, strel=args.relion)
        base_mask = binary_dilate(base_mask, args.extend, strel=args.relion)
        base_mask = base_mask &~ excl_mask
        if args.overlap > 0:
            incl_mask = binary_dilate(base_mask, args.overlap, strel=args.relion) & excl_mask
            base_mask = base_mask | incl_mask
        mask = base_mask
    elif args.extend > 0:
        mask = binary_dilate(mask, args.extend, strel=args.relion)
    if args.close:
        se = binary_sphere(args.extend, False)
        mask = binary_closing(mask, structure=se, iterations=1)
    final = mask.astype(np.single)
    if args.edge_width != 0:
        dt = distance_transform_edt(~mask)  # Compute *outward* distance transform of mask.
        idx = (dt <= args.edge_width) & (dt > 0)  # Identify edge points by distance from mask.
        x = np.arange(1, args.edge_width + 1)  # Domain of the edge profile.
        if "sin" in args.edge_profile:
            y = np.sin(np.linspace(np.pi/2, 0, args.edge_width + 1))  # Range of the edge profile.
        f = interp1d(x, y[1:])
        final[idx] = f(dt[idx])  # Insert edge heights interpolated at distance transform values.
    write(args.output, final, psz=hdr["xlen"] / hdr["nx"])
    return 0 
開發者ID:asarnow,項目名稱:pyem,代碼行數:35,代碼來源:mask.py


注:本文中的scipy.ndimage.binary_closing方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。