當前位置: 首頁>>代碼示例>>Python>>正文


Python scipy.ndarray方法代碼示例

本文整理匯總了Python中scipy.ndarray方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.ndarray方法的具體用法?Python scipy.ndarray怎麽用?Python scipy.ndarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy的用法示例。


在下文中一共展示了scipy.ndarray方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: matrix

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ndarray [as 別名]
def matrix(self, time_interval, **kwargs):
        """Model matrix :math:`F`

        Returns
        -------
        : :class:`numpy.ndarray` of shape\
        (:py:attr:`~ndim_state`, :py:attr:`~ndim_state`)
        """
        time_interval_sec = time_interval.total_seconds()
        turn_ratedt = self.turn_rate * time_interval_sec
        z = np.zeros([2, 2])
        transition_matrices = [
            model.matrix(time_interval) for model in self.model_list]
        sandwich = block_diag(z, *transition_matrices, z)
        sandwich[0:2, 0:2] = np.array([[1, np.sin(turn_ratedt)/self.turn_rate],
                                      [0, np.cos(turn_ratedt)]])
        sandwich[0:2, -2:] = np.array(
            [[0, (np.cos(turn_ratedt)-1)/self.turn_rate],
             [0, -np.sin(turn_ratedt)]])
        sandwich[-2:, 0:2] = np.array(
            [[0, (1-np.cos(turn_ratedt))/self.turn_rate],
             [0, np.sin(turn_ratedt)]])
        sandwich[-2:, -2:] = np.array([[1, np.sin(turn_ratedt)/self.turn_rate],
                                       [0, np.cos(turn_ratedt)]])
        return sandwich 
開發者ID:dstl,項目名稱:Stone-Soup,代碼行數:27,代碼來源:linear.py

示例2: __kullback_leibler

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ndarray [as 別名]
def __kullback_leibler(h1, h2): # 36.3 us
    """
    The actual KL implementation. @see kullback_leibler() for details.
    Expects the histograms to be of type scipy.ndarray.
    """
    result = h1.astype(scipy.float_)
    mask = h1 != 0
    result[mask] = scipy.multiply(h1[mask], scipy.log(h1[mask] / h2[mask]))
    return scipy.sum(result) 
開發者ID:doublechenching,項目名稱:brats_segmentation-pytorch,代碼行數:11,代碼來源:histogram.py

示例3: __prepare_histogram

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ndarray [as 別名]
def __prepare_histogram(h1, h2):
    """Convert the histograms to scipy.ndarrays if required."""
    h1 = h1 if scipy.ndarray == type(h1) else scipy.asarray(h1)
    h2 = h2 if scipy.ndarray == type(h2) else scipy.asarray(h2)
    if h1.shape != h2.shape or h1.size != h2.size:
        raise ValueError('h1 and h2 must be of same shape and size')
    return h1, h2 
開發者ID:doublechenching,項目名稱:brats_segmentation-pytorch,代碼行數:9,代碼來源:histogram.py

示例4: execute

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ndarray [as 別名]
def execute(self, image_array: ndarray):
        pass 
開發者ID:tomahim,項目名稱:py-image-dataset-generator,代碼行數:4,代碼來源:operations.py

示例5: gen_feature_nodearray

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ndarray [as 別名]
def gen_feature_nodearray(xi, feature_max=None):
	if feature_max:
		assert(isinstance(feature_max, int))

	xi_shift = 0 # ensure correct indices of xi
	if scipy and isinstance(xi, tuple) and len(xi) == 2\
			and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector
		index_range = xi[0] + 1 # index starts from 1
		if feature_max:
			index_range = index_range[scipy.where(index_range <= feature_max)]
	elif scipy and isinstance(xi, scipy.ndarray):
		xi_shift = 1
		index_range = xi.nonzero()[0] + 1 # index starts from 1
		if feature_max:
			index_range = index_range[scipy.where(index_range <= feature_max)]
	elif isinstance(xi, (dict, list, tuple)):
		if isinstance(xi, dict):
			index_range = xi.keys()
		elif isinstance(xi, (list, tuple)):
			xi_shift = 1
			index_range = range(1, len(xi) + 1)
		index_range = filter(lambda j: xi[j-xi_shift] != 0, index_range)

		if feature_max:
			index_range = filter(lambda j: j <= feature_max, index_range)
		index_range = sorted(index_range)
	else:
		raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)')

	ret = (feature_node*(len(index_range)+2))()
	ret[-1].index = -1 # for bias term
	ret[-2].index = -1

	if scipy and isinstance(xi, tuple) and len(xi) == 2\
			and isinstance(xi[0], scipy.ndarray) and isinstance(xi[1], scipy.ndarray): # for a sparse vector
		for idx, j in enumerate(index_range):
			ret[idx].index = j
			ret[idx].value = (xi[1])[idx]
	else:
		for idx, j in enumerate(index_range):
			ret[idx].index = j
			ret[idx].value = xi[j - xi_shift]

	max_idx = 0
	if len(index_range) > 0:
		max_idx = index_range[-1]
	return ret, max_idx 
開發者ID:AudioVisualEmotionChallenge,項目名稱:AVEC2018,代碼行數:49,代碼來源:liblinear.py

示例6: __init__

# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import ndarray [as 別名]
def __init__(self, y, x, bias = -1):
		if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, scipy.ndarray))):
			raise TypeError("type of y: {0} is not supported!".format(type(y)))

		if isinstance(x, (list, tuple)):
			if len(y) != len(x):
				raise ValueError("len(y) != len(x)")
		elif scipy != None and isinstance(x, (scipy.ndarray, sparse.spmatrix)):
			if len(y) != x.shape[0]:
				raise ValueError("len(y) != len(x)")
			if isinstance(x, scipy.ndarray):
				x = scipy.ascontiguousarray(x) # enforce row-major
			if isinstance(x, sparse.spmatrix):
				x = x.tocsr()
				pass
		else:
			raise TypeError("type of x: {0} is not supported!".format(type(x)))
		self.l = l = len(y)
		self.bias = -1

		max_idx = 0
		x_space = self.x_space = []
		if scipy != None and isinstance(x, sparse.csr_matrix):
			csr_to_problem(x, self)
			max_idx = x.shape[1]
		else:
			for i, xi in enumerate(x):
				tmp_xi, tmp_idx = gen_feature_nodearray(xi)
				x_space += [tmp_xi]
				max_idx = max(max_idx, tmp_idx)
		self.n = max_idx

		self.y = (c_double * l)()
		if scipy != None and isinstance(y, scipy.ndarray):
			scipy.ctypeslib.as_array(self.y, (self.l,))[:] = y
		else:
			for i, yi in enumerate(y): self.y[i] = yi

		self.x = (POINTER(feature_node) * l)()
		if scipy != None and isinstance(x, sparse.csr_matrix):
			base = addressof(self.x_space.ctypes.data_as(POINTER(feature_node))[0])
			x_ptr = cast(self.x, POINTER(c_uint64))
			x_ptr = scipy.ctypeslib.as_array(x_ptr,(self.l,))
			x_ptr[:] = self.rowptr[:-1]*sizeof(feature_node)+base
		else:
			for i, xi in enumerate(self.x_space): self.x[i] = xi

		self.set_bias(bias) 
開發者ID:AudioVisualEmotionChallenge,項目名稱:AVEC2018,代碼行數:50,代碼來源:liblinear.py


注:本文中的scipy.ndarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。