本文整理匯總了Python中scipy.misc.imresize方法的典型用法代碼示例。如果您正苦於以下問題:Python misc.imresize方法的具體用法?Python misc.imresize怎麽用?Python misc.imresize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.misc
的用法示例。
在下文中一共展示了misc.imresize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def test(self):
list_ = os.listdir("./maps/val/")
nums_file = list_.__len__()
saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, "generator"))
saver.restore(self.sess, "./save_para/model.ckpt")
rand_select = np.random.randint(0, nums_file)
INPUTS_CONDITION = np.zeros([1, self.img_h, self.img_w, 3])
INPUTS = np.zeros([1, self.img_h, self.img_w, 3])
img = np.array(Image.open(self.path + list_[rand_select]))
img_h, img_w = img.shape[0], img.shape[1]
INPUTS_CONDITION[0] = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0
INPUTS[0] = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0
[fake_img] = self.sess.run([self.inputs_fake], feed_dict={self.inputs_condition: INPUTS_CONDITION})
out_img = np.concatenate((INPUTS_CONDITION[0], fake_img[0], INPUTS[0]), axis=1)
Image.fromarray(np.uint8((out_img + 1.0)*127.5)).save("./results/1.jpg")
plt.imshow(np.uint8((out_img + 1.0)*127.5))
plt.grid("off")
plt.axis("off")
plt.show()
示例2: train
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def train(self):
list = os.listdir(self.path)
nums_file = list.__len__()
saver = tf.train.Saver()
for i in range(10000):
rand_select = np.random.randint(0, nums_file, [self.batch_size])
INPUTS = np.zeros([self.batch_size, self.img_h, self.img_w, 3])
INPUTS_CONDITION = np.zeros([self.batch_size, self.img_h, self.img_w, 3])
for j in range(self.batch_size):
img = np.array(Image.open(self.path + list[rand_select[j]]))
img_h, img_w = img.shape[0], img.shape[1]
INPUT_CON = misc.imresize(img[:, :img_w//2], [self.img_h, self.img_w]) / 127.5 - 1.0
INPUTS_CONDITION[j] = np.dstack((INPUT_CON, INPUT_CON, INPUT_CON))
INPUT = misc.imresize(img[:, img_w//2:], [self.img_h, self.img_w]) / 127.5 - 1.0
INPUTS[j] = np.dstack((INPUT, INPUT, INPUT))
self.sess.run(self.opt_dis, feed_dict={self.inputs: INPUTS, self.inputs_condition: INPUTS_CONDITION})
self.sess.run(self.opt_gen, feed_dict={self.inputs: INPUTS, self.inputs_condition: INPUTS_CONDITION})
if i % 10 == 0:
[G_LOSS, D_LOSS] = self.sess.run([self.g_loss, self.d_loss], feed_dict={self.inputs: INPUTS, self.inputs_condition: INPUTS_CONDITION})
print("Iteration: %d, d_loss: %f, g_loss: %f"%(i, D_LOSS, G_LOSS))
if i % 100 == 0:
saver.save(self.sess, "./save_para//model.ckpt")
示例3: align_char
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def align_char(char_img, target_h, target_w):
canvas = np.ones([target_h, target_w], dtype=np.int32) * 255
img_h, img_w = char_img.shape[0], char_img.shape[1]
if img_h > img_w:
new_h = target_h
new_w = np.int32(img_w * target_h / img_h)
char_img = misc.imresize(char_img, [new_h, new_w])
mid_w = target_w // 2
start = mid_w - new_w // 2
end = start + new_w
canvas[:, start:end] = char_img
if img_h < img_w:
new_w = target_w
new_h = np.int32(img_h * target_w / img_w)
char_img = misc.imresize(char_img, [new_h, new_w])
mid_h = target_h // 2
start = mid_h - new_h // 2
end = start + new_h
canvas[start:end, :] = char_img
if img_h == img_w:
canvas = misc.imresize(char_img, [target_h, target_w])
return canvas
開發者ID:MingtaoGuo,項目名稱:Chinese-Character-and-Calligraphic-Image-Processing,代碼行數:24,代碼來源:segmentFinal.py
示例4: apply_val_transform_image
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def apply_val_transform_image(image,inputRes=None):
meanval = (104.00699, 116.66877, 122.67892)
if inputRes is not None:
image = sm.imresize(image, inputRes)
image = np.array(image, dtype=np.float32)
image = np.subtract(image, np.array(meanval, dtype=np.float32))
if image.ndim == 2:
image = image[:, :, np.newaxis]
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1))
image = torch.from_numpy(image)
return image
示例5: make_img_gt_pair
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def make_img_gt_pair(self, idx):
"""
Make the image-ground-truth pair
"""
img = cv2.imread(os.path.join(self.db_root_dir, self.img_list[idx]))
if self.labels[idx] is not None:
label = cv2.imread(os.path.join(self.db_root_dir, self.labels[idx]), 0)
else:
gt = np.zeros(img.shape[:-1], dtype=np.uint8)
if self.inputRes is not None:
img = imresize(img, self.inputRes)
if self.labels[idx] is not None:
label = imresize(label, self.inputRes, interp='nearest')
img = np.array(img, dtype=np.float32)
img = np.subtract(img, np.array(self.meanval, dtype=np.float32))
if self.labels[idx] is not None:
gt = np.array(label, dtype=np.float32)
gt = gt/np.max([gt.max(), 1e-8])
return img, gt
示例6: transform
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def transform(self, img, lbl):
img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode
img = img[:, :, ::-1] # RGB -> BGR
img = img.astype(np.float64)
img -= self.mean
if self.img_norm:
# Resize scales images from 0 to 255, thus we need
# to divide by 255.0
img = img.astype(float) / 255.0
# NHWC -> NCHW
img = img.transpose(2, 0, 1)
classes = np.unique(lbl)
lbl = lbl.astype(float)
lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), "nearest", mode="F")
lbl = lbl.astype(int)
assert np.all(classes == np.unique(lbl))
img = torch.from_numpy(img).float()
lbl = torch.from_numpy(lbl).long()
return img, lbl
示例7: transform
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def transform(self, img, lbl):
img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode
img = img[:, :, ::-1] # RGB -> BGR
img = img.astype(np.float64)
img -= self.mean
if self.img_norm:
# Resize scales images from 0 to 255, thus we need
# to divide by 255.0
img = img.astype(float) / 255.0
# NHWC -> NCHW
img = img.transpose(2, 0, 1)
lbl[lbl==255] = 0
lbl = lbl.astype(float)
lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest',
mode='F')
lbl = lbl.astype(int)
img = torch.from_numpy(img).float()
lbl = torch.from_numpy(lbl).long()
return img, lbl
示例8: transform
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def transform(self, img, lbl):
img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode
img = img[:, :, ::-1] # RGB -> BGR
img = img.astype(np.float64)
img -= self.mean
if self.img_norm:
# Resize scales images from 0 to 255, thus we need
# to divide by 255.0
img = img.astype(float) / 255.0
# NHWC -> NCHW
img = img.transpose(2, 0, 1)
classes = np.unique(lbl)
lbl = lbl.astype(float)
lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
lbl = lbl.astype(int)
assert(np.all(classes == np.unique(lbl)))
img = torch.from_numpy(img).float()
lbl = torch.from_numpy(lbl).long()
return img, lbl
示例9: transform
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def transform(self, img, lbl):
img = m.imresize(img, (self.img_size[0], self.img_size[1])) # uint8 with RGB mode
img = img[:, :, ::-1] # RGB -> BGR
img = img.astype(np.float64)
img -= self.mean
if self.img_norm:
# Resize scales images from 0 to 255, thus we need
# to divide by 255.0
img = img.astype(float) / 255.0
# NHWC -> NCHW
img = img.transpose(2, 0, 1)
lbl = self.encode_segmap(lbl)
classes = np.unique(lbl)
lbl = lbl.astype(float)
lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
lbl = lbl.astype(int)
assert(np.all(classes == np.unique(lbl)))
img = torch.from_numpy(img).float()
lbl = torch.from_numpy(lbl).long()
return img, lbl
示例10: resize
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def resize(video, size, interpolation):
"""
:param video: ... x h x w x num_channels
:param size: (h, w)
:param interpolation: 'bilinear', 'nearest'
:return:
"""
shape = video.shape[:-3]
num_channels = video.shape[-1]
video = video.reshape((-1, *video.shape[-3:]))
resized_video = np.zeros((video.shape[0], *size, video.shape[-1]))
for i in range(video.shape[0]):
if num_channels == 3:
resized_video[i] = imresize(video[i], size, interpolation)
elif num_channels == 2:
resized_video[i, ..., 0] = imresize(video[i, ..., 0], size, interpolation)
resized_video[i, ..., 1] = imresize(video[i, ..., 1], size, interpolation)
elif num_channels == 1:
resized_video[i, ..., 0] = imresize(video[i, ..., 0], size, interpolation)
else:
raise NotImplementedError
return resized_video.reshape((*shape, *size, video.shape[-1]))
示例11: crop_det
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def crop_det(det_M, img):
global track_struct
crop_det_folder = track_struct['file_path']['crop_det_folder']
crop_size = track_struct['track_params']['crop_size']
if not os.path.isdir(crop_det_folder):
os.makedirs(crop_det_folder)
save_patch_list = []
for n in range(len(det_M)):
xmin = int(max(0,det_M[n,1]))
xmax = int(min(img.shape[1]-1,det_M[n,1]+det_M[n,3]))
ymin = int(max(0,det_M[n,2]))
ymax = int(min(img.shape[0]-1,det_M[n,2]+det_M[n,4]))
img_patch = img[ymin:ymax,xmin:xmax,:]
img_patch = misc.imresize(img_patch, size=[crop_size,crop_size])
patch_name = track_lib.file_name(n,4)+'.png'
save_path = crop_det_folder+'/'+patch_name
misc.imsave(save_path, img_patch)
save_patch_list.append(save_path)
return save_patch_list
示例12: _compute_statistics_of_path
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def _compute_statistics_of_path(path, model, batch_size, dims, cuda):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
#imgs = np.array([imresize(imread(str(fn)),(64,64)).astype(np.float32) for fn in files])
imgs = np.array([imread(str(fn)).astype(np.float32) for fn in files])
# Bring images to shape (B, 3, H, W)
imgs = imgs.transpose((0, 3, 1, 2))
# Rescale images to be between 0 and 1
imgs /= 255
m, s = calculate_activation_statistics(imgs, model, batch_size,
dims, cuda)
return m, s
示例13: resizeImg
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def resizeImg(imgPath,img_size):
img = imread(imgPath)
h, w, _ = img.shape
scale = 1
if w >= h:
new_w = img_size
if w >= new_w:
scale = float(new_w) / w
new_h = int(h * scale)
else:
new_h = img_size
if h >= new_h:
scale = float(new_h) / h
new_w = int(w * scale)
new_img = imresize(img, (new_h, new_w), interp='bilinear')
imsave(imgPath,new_img)
#Download img
#Later we can do multi thread apply workers to do faster work
示例14: resizeImg
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def resizeImg(imgPath,img_size):
img = imread(imgPath)
h, w, _ = img.shape
scale = 1
if w >= h:
new_w = img_size
if w >= new_w:
scale = float(new_w) / w
new_h = int(h * scale)
else:
new_h = img_size
if h >= new_h:
scale = float(new_h) / h
new_w = int(w * scale)
new_img = imresize(img, (new_h, new_w), interp='bilinear')
imsave(imgPath,new_img)
print('Img Resized as {}'.format(img_size))
示例15: resizeImg
# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import imresize [as 別名]
def resizeImg(imgPath,img_size):
try:
img = imread(imgPath)
h, w, _ = img.shape
scale = 1
if w >= h:
new_w = img_size
if w >= new_w:
scale = float(new_w) / w
new_h = int(h * scale)
else:
new_h = img_size
if h >= new_h:
scale = float(new_h) / h
new_w = int(w * scale)
new_img = imresize(img, (new_h, new_w), interp='bilinear')
imsave(imgPath,new_img)
print('Img Resized as {}'.format(img_size))
except Exception as e:
print(e)