本文整理匯總了Python中scipy.misc方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.misc方法的具體用法?Python scipy.misc怎麽用?Python scipy.misc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.misc方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: center_crop
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def center_crop(x, crop_h, crop_w=None, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
rate = np.random.uniform(0, 1, size=1)
if rate < 0.5:
x = np.fliplr(x)
#first crop tp 178x178 and resize to 128x128
return scipy.misc.imresize(x[20:218-20, 0: 178], [resize_w, resize_w])
#Another cropped method
# return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w],
# [resize_w, resize_w])
示例2: read_img
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def read_img(path, data_type):
# read image by misc or from .npy
# return: Numpy float32, HWC, RGB, [0,255]
if data_type == 'img':
img = imageio.imread(path, pilmode='RGB')
elif data_type.find('npy') >= 0:
img = np.load(path)
else:
raise NotImplementedError
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
return img
####################
# image processing
# process on numpy image
####################
示例3: imsave
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def imsave(image, path):
label_colours = [
(0,0,0),
# 0=background
(128,0,0),(0,128,0),(128,128,0),(0,0,128),(128,0,128),
# 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle
(0,128,128),(128,128,128),(64,0,0),(192,0,0),(64,128,0),
# 6=bus, 7=car, 8=cat, 9=chair, 10=cow
(192,128,0),(64,0,128),(192,0,128),(64,128,128),(192,128,128),
# 11=diningtable, 12=dog, 13=horse, 14=motorbike, 15=person
(0,64,0),(128,64,0),(0,192,0),(128,192,0),(0,64,128)]
# 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor
images = np.ones(list(image.shape)+[3])
for j_, j in enumerate(image):
for k_, k in enumerate(j):
if k < 21:
images[j_, k_] = label_colours[int(k)]
scipy.misc.imsave(path, images)
示例4: single_img_colorize
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def single_img_colorize( predicted, input_batch, to_store_name ):
maxs = np.amax(predicted, axis=-1)
softmax = np.exp(predicted - np.expand_dims(maxs, axis=-1))
sums = np.sum(softmax, axis=-1)
softmax = softmax / np.expand_dims(sums, -1)
kernel = np.load('lib/data/pts_in_hull.npy')
gen_target_no_temp = np.dot(softmax, kernel)
images_resized = np.zeros([0, 256, 256, 2], dtype=np.float32)
for image in range(gen_target_no_temp.shape[0]):
temp = scipy.ndimage.zoom(np.squeeze(gen_target_no_temp[image]), (4, 4, 1), mode='nearest')
images_resized = np.append(images_resized, np.expand_dims(temp, axis=0), axis=0)
inp_rescale = rescale_l_for_display(input_batch)
output_lab_no_temp = np.concatenate((inp_rescale, images_resized), axis=3).astype(np.float64)
for i in range(input_batch.shape[0]):
output_lab_no_temp[i,:,:,:] = skimage.color.lab2rgb(output_lab_no_temp[i,:,:,:])
predicted = output_lab_no_temp
scipy.misc.toimage(np.squeeze(predicted), cmin=0.0, cmax=1.0).save(to_store_name)
示例5: single_img_colorize
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def single_img_colorize( predicted, input_batch, to_store_name ):
maxs = np.amax(predicted, axis=-1)
softmax = np.exp(predicted - np.expand_dims(maxs, axis=-1))
sums = np.sum(softmax, axis=-1)
softmax = softmax / np.expand_dims(sums, -1)
kernel = np.load('/home/ubuntu/task-taxonomy-331b/lib/data/pts_in_hull.npy')
gen_target_no_temp = np.dot(softmax, kernel)
images_resized = np.zeros([0, 256, 256, 2], dtype=np.float32)
for image in range(gen_target_no_temp.shape[0]):
temp = scipy.ndimage.zoom(np.squeeze(gen_target_no_temp[image]), (4, 4, 1), mode='nearest')
images_resized = np.append(images_resized, np.expand_dims(temp, axis=0), axis=0)
inp_rescale = rescale_l_for_display(input_batch)
output_lab_no_temp = np.concatenate((inp_rescale, images_resized), axis=3).astype(np.float64)
for i in range(input_batch.shape[0]):
output_lab_no_temp[i,:,:,:] = skimage.color.lab2rgb(output_lab_no_temp[i,:,:,:])
predicted = output_lab_no_temp
scipy.misc.toimage(np.squeeze(predicted), cmin=0.0, cmax=1.0).save(to_store_name)
示例6: center_crop
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def center_crop(x, crop_h, crop_w=None, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
rate = np.random.uniform(0, 1, size=1)
if rate < 0.5:
x = np.fliplr(x)
return scipy.misc.imresize(x[j:j + crop_h, i:i + crop_w],
[resize_w, resize_w])
# return scipy.misc.imresize(x[20:218 - 20, 0: 178], [resize_w, resize_w])
# return scipy.misc.imresize(x[45: 45 + 128, 25:25 + 128], [resize_w, resize_w])
示例7: _get_image
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def _get_image(self, image_path):
"""Retrieves an image at a given path and resizes it to the
specified size.
Args:
image_path: Path to image.
Returns:
Loaded and transformed image.
"""
# Read image at image_path.
image = scipy.misc.imread(image_path).astype(np.float)
# Return transformed image.
return _prepare_image(image, self.center_crop_dim,
self.center_crop_dim,
resize_height=self.resize_size,
resize_width=self.resize_size,
is_crop=True)
示例8: transform
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def transform(image, npx=64 , is_crop=False, resize_w=64):
# npx : # of pixels width/height of image
if is_crop:
cropped_image = center_crop(image , npx , resize_w = resize_w)
else:
cropped_image = image
cropped_image = scipy.misc.imresize(cropped_image ,
[resize_w , resize_w])
return np.array(cropped_image)/127.5 - 1
示例9: imread
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def imread(path, is_grayscale=False):
if (is_grayscale):
return scipy.misc.imread(path, flatten=True).astype(np.float)
else:
return scipy.misc.imread(path).astype(np.float)
示例10: imsave
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def imsave(images, size, path):
return scipy.misc.imsave(path, merge(images, size))
示例11: load_image
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def load_image(image_path, img_size=None):
assert exists(image_path), "image {} does not exist".format(image_path)
img = scipy.misc.imread(image_path)
if (len(img.shape) != 3) or (img.shape[2] != 3):
img = np.dstack((img, img, img))
if (img_size is not None):
img = scipy.misc.imresize(img, img_size)
img = img.astype("float32")
return img
示例12: save_image
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def save_image(img, path):
scipy.misc.imsave(path, np.clip(img, 0, 255).astype(np.uint8))
示例13: _auto_color
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def _auto_color(self, url:str, ranks):
phrases = ["Calculating colors..."] # in case I want more
#try:
await self.bot.say("**{}**".format(random.choice(phrases)))
clusters = 10
async with aiohttp.get(url) as r:
image = await r.content.read()
with open('data/leveler/temp_auto.png','wb') as f:
f.write(image)
im = Image.open('data/leveler/temp_auto.png').convert('RGBA')
im = im.resize((290, 290)) # resized to reduce time
ar = scipy.misc.fromimage(im)
shape = ar.shape
ar = ar.reshape(scipy.product(shape[:2]), shape[2])
codes, dist = scipy.cluster.vq.kmeans(ar.astype(float), clusters)
vecs, dist = scipy.cluster.vq.vq(ar, codes) # assign codes
counts, bins = scipy.histogram(vecs, len(codes)) # count occurrences
# sort counts
freq_index = []
index = 0
for count in counts:
freq_index.append((index, count))
index += 1
sorted_list = sorted(freq_index, key=operator.itemgetter(1), reverse=True)
colors = []
for rank in ranks:
color_index = min(rank, len(codes))
peak = codes[sorted_list[color_index][0]] # gets the original index
peak = peak.astype(int)
colors.append(''.join(format(c, '02x') for c in peak))
return colors # returns array
#except:
#await self.bot.say("```Error or no scipy. Install scipy doing 'pip3 install numpy' and 'pip3 install scipy' or read here: https://github.com/AznStevy/Maybe-Useful-Cogs/blob/master/README.md```")
# converts hex to rgb
示例14: process_file
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def process_file(params):
index, data, base_filename, db_name, C, aug_data = params
label = index % NUM_CLASSES
if C==1:
orig_im = data[0,:,:]
im = ndimage.interpolation.zoom(orig_im, DOWNSCALE_FACTOR)
elif C==2:
im = np.zeros((int(MAT_SHAPE[2]*DOWNSCALE_FACTOR),int(MAT_SHAPE[3]*DOWNSCALE_FACTOR),3))
orig_im = np.zeros((MAT_SHAPE[2],MAT_SHAPE[3],3))
im[:,:,0] = ndimage.interpolation.zoom(data[0,:,:], DOWNSCALE_FACTOR)
im[:,:,1] = ndimage.interpolation.zoom(data[1,:,:], DOWNSCALE_FACTOR)
orig_im[:,:,0] = data[0,:,:]
orig_im[:,:,1] = data[1,:,:]
else:
print "Error in reading data to db- number of channels must be 1 or 2"
im_name = '%s_%d%s' % (base_filename, index,IM_FORMAT)
scipy.misc.toimage(im, cmin=0.0, cmax=255.0).save(os.path.join(db_name,im_name))
im_names = [im_name]
if aug_data:
degrees = [-20, -10, 10, 20]
crop_dims = [2, 4, 6, 8]
for i, degree in enumerate(degrees):
im_name = '%s_%d_%d%s' % (base_filename,index,degree,IM_FORMAT)
im_names.append(im_name)
rot_im = rotate_im(orig_im, degree)
scipy.misc.toimage(rot_im, cmin=0.0, cmax=255.0).save(os.path.join(db_name,im_name))
for i, crop_dim in enumerate(crop_dims):
im_name = '%s_%d_%d%s' % (base_filename,index,crop_dim,IM_FORMAT)
im_names.append(im_name)
cr_im = crop_and_rescale(orig_im, crop_dim)
scipy.misc.toimage(cr_im, cmin=0.0, cmax=255.0).save(os.path.join(db_name,im_name))
return label, im_names
示例15: read_depth
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import misc [as 別名]
def read_depth(self, filename):
depth_mat = sio.loadmat(filename)
depthtmp=depth_mat["depth"]
ds = depthtmp.shape
if self.is_crop:
depth = scipy.misc.imresize(depthtmp,(self.output_height,self.output_width),mode='F')
depth = np.array(depth).astype(np.float32)
depth = np.multiply(self.max_depth,np.divide(depth,depth.max()))
return depth