當前位置: 首頁>>代碼示例>>Python>>正文


Python misc.derivative方法代碼示例

本文整理匯總了Python中scipy.misc.derivative方法的典型用法代碼示例。如果您正苦於以下問題:Python misc.derivative方法的具體用法?Python misc.derivative怎麽用?Python misc.derivative使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.misc的用法示例。


在下文中一共展示了misc.derivative方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_PR78MIX

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def test_PR78MIX():
    # Copied and pasted example from PR78.
    eos = PR78MIX(Tcs=[632], Pcs=[5350000], omegas=[0.734], zs=[1], T=299., P=1E6)
    three_props = [eos.V_l, eos.H_dep_l, eos.S_dep_l]
    expect_props = [8.351960066075052e-05, -63764.64948050847, -130.737108912626]
    assert_allclose(three_props, expect_props)

    # Fugacities
    eos = PR78MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.6, 0.7], zs=[0.5, 0.5], kijs=[[0,0],[0,0]])
    # Numerically test fugacities at one point, with artificially high omegas
    def numerical_fugacity_coefficient(n1, n2=0.5, switch=False, l=True):
        if switch:
            n1, n2 = n2, n1
        tot = n1+n2
        zs = [i/tot for i in [n1,n2]]
        a = PR78MIX(T=115, P=1E6, Tcs=[126.1, 190.6], Pcs=[33.94E5, 46.04E5], omegas=[0.6, 0.7], zs=zs, kijs=[[0,0],[0,0]])
        phi = a.phi_l if l else a.phi_g
        return tot*log(phi)

    phis = [[derivative(numerical_fugacity_coefficient, 0.5, dx=1E-6, order=25, args=(0.5, i, j)) for i in [False, True]] for j in [False, True]]
    assert_allclose(phis, [eos.lnphis_g, eos.lnphis_l]) 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:23,代碼來源:test_eos_mix.py

示例2: test_UNIFAC_misc

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def test_UNIFAC_misc():
    from scipy.misc import derivative
    from math import log
    T = 273.15 + 60
    
    def gE_T(T):
        xs = [0.5, 0.5]
        gammas = UNIFAC(chemgroups=[{1:2, 2:4}, {1:1, 2:1, 18:1}], T=T, xs=xs)
        return R*T*sum(xi*log(gamma) for xi, gamma in zip(xs, gammas))
    
    def hE_T(T):
        to_diff = lambda T: gE_T(T)/T
        return -derivative(to_diff, T,dx=1E-5, order=7)*T**2

    # A source gives 854.758 for hE, matching to within a gas constant
    assert_allclose(hE_T(T), 854.771631451345)
    assert_allclose(gE_T(T), 923.6408846044955) 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:19,代碼來源:test_unifac.py

示例3: calculate_engine_temperature_derivatives

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def calculate_engine_temperature_derivatives(
        times, engine_coolant_temperatures):
    """
    Calculates the derivative of the engine temperature [°C/s].

    :param times:
        Time vector [s].
    :type times: numpy.array

    :param engine_coolant_temperatures:
        Engine coolant temperature vector [°C].
    :type engine_coolant_temperatures: numpy.array

    :return:
        Derivative of the engine temperature [°C/s].
    :rtype: numpy.array
    """
    from statsmodels.nonparametric.smoothers_lowess import lowess
    par = dfl.functions.calculate_engine_temperature_derivatives
    temp = lowess(
        engine_coolant_temperatures, times, is_sorted=True,
        frac=par.tw * len(times) / (times[-1] - times[0]) ** 2, missing='none'
    )[:, 1].ravel()
    return _derivative(times, temp) 
開發者ID:JRCSTU,項目名稱:CO2MPAS-TA,代碼行數:26,代碼來源:thermal.py

示例4: interval

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def interval(self, alpha, *args, **kwds):
        """
        Confidence interval with equal areas around the median.

        Parameters
        ----------
        alpha : array_like of float
            Probability that an rv will be drawn from the returned range.
            Each value should be in the range [0, 1].
        arg1, arg2, ... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            location parameter, Default is 0.
        scale : array_like, optional
            scale parameter, Default is 1.

        Returns
        -------
        a, b : ndarray of float
            end-points of range that contain ``100 * alpha %`` of the rv's
            possible values.

        """
        alpha = asarray(alpha)
        if np.any((alpha > 1) | (alpha < 0)):
            raise ValueError("alpha must be between 0 and 1 inclusive")
        q1 = (1.0-alpha)/2
        q2 = (1.0+alpha)/2
        a = self.ppf(q1, *args, **kwds)
        b = self.ppf(q2, *args, **kwds)
        return a, b


##  continuous random variables: implement maybe later
##
##  hf  --- Hazard Function (PDF / SF)
##  chf  --- Cumulative hazard function (-log(SF))
##  psf --- Probability sparsity function (reciprocal of the pdf) in
##                units of percent-point-function (as a function of q).
##                Also, the derivative of the percent-point function. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:_distn_infrastructure.py

示例5: _pdf

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def _pdf(self, x, *args):
        return derivative(self._cdf, x, dx=1e-5, args=args, order=5)

    ## Could also define any of these 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:_distn_infrastructure.py

示例6: norm_lls_grad

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def norm_lls_grad(y, params):
    '''Jacobian of normal loglikelihood wrt mean mu and variance sigma2

    Parameters
    ----------
    y : array, 1d
        normally distributed random variable
    params: array, (nobs, 2)
        array of mean, variance (mu, sigma2) with observations in rows

    Returns
    -------
    grad : array (nobs, 2)
        derivative of loglikelihood for each observation wrt mean in first
        column, and wrt variance in second column

    Notes
    -----
    this is actually the derivative wrt sigma not sigma**2, but evaluated
    with parameter sigma2 = sigma**2

    '''
    mu, sigma2 = params.T
    dllsdmu = (y-mu)/sigma2
    dllsdsigma2 = ((y-mu)**2/sigma2 - 1)/np.sqrt(sigma2)
    return np.column_stack((dllsdmu, dllsdsigma2)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:28,代碼來源:tools.py

示例7: normgrad

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def normgrad(y, x, params):
    '''Jacobian of normal loglikelihood wrt mean mu and variance sigma2

    Parameters
    ----------
    y : array, 1d
        normally distributed random variable with mean x*beta, and variance sigma2
    x : array, 2d
        explanatory variables, observation in rows, variables in columns
    params: array_like, (nvars + 1)
        array of coefficients and variance (beta, sigma2)

    Returns
    -------
    grad : array (nobs, 2)
        derivative of loglikelihood for each observation wrt mean in first
        column, and wrt scale (sigma) in second column
    assume params = (beta, sigma2)

    Notes
    -----
    TODO: for heteroscedasticity need sigma to be a 1d array

    '''
    beta = params[:-1]
    sigma2 = params[-1]*np.ones((len(y),1))
    dmudbeta = mean_grad(x, beta)
    mu = np.dot(x, beta)
    #print(beta, sigma2)
    params2 = np.column_stack((mu,sigma2))
    dllsdms = norm_lls_grad(y,params2)
    grad = np.column_stack((dllsdms[:,:1]*dmudbeta, dllsdms[:,:1]))
    return grad 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:35,代碼來源:tools.py

示例8: norm_dlldy

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def norm_dlldy(y):
    '''derivative of log pdf of standard normal with respect to y
    '''
    return -y 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:6,代碼來源:tools.py

示例9: ts_dlldy

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def ts_dlldy(y, df):
    '''derivative of log pdf of standardized (?) t with respect to y

    Notes
    -----
    parameterized for garch, with mean 0 and variance 1
    '''
    #(df+1)/2. / (1 + y**2/(df-2.)) * 2.*y/(df-2.)
    #return -(df+1)/(df-2.) / (1 + y**2/(df-2.)) * y
    return -(df+1)/(df) / (1 + y**2/(df)) * y 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:12,代碼來源:tools.py

示例10: locscale_grad

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def locscale_grad(y, loc, scale, dlldy, *args):
    '''derivative of log-likelihood with respect to location and scale

    Parameters
    ----------
    y : array_like
        data points of random variable at which loglike is evaluated
    loc : float
        location parameter of distribution
    scale : float
        scale parameter of distribution
    dlldy : function
        derivative of loglikelihood fuction wrt. random variable x
    args : array_like
        shape parameters of log-likelihood function

    Returns
    -------
    dlldloc : array
        derivative of loglikelihood wrt location evaluated at the
        points given in y
    dlldscale : array
        derivative of loglikelihood wrt scale evaluated at the
        points given in y

    '''
    yst = (y-loc)/scale    #ystandardized
    dlldloc = -dlldy(yst, *args) / scale
    dlldscale = -1./scale - dlldy(yst, *args) * (y-loc)/scale**2
    return dlldloc, dlldscale 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:32,代碼來源:tools.py

示例11: isobaric_expansion

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def isobaric_expansion(V, dV_dT):
    r'''Calculate the isobaric coefficient of a thermal expansion, given its 
    molar volume at a certain `T` and `P`, and its derivative of molar volume
    with respect to `T`.

    .. math::
        \beta = \frac{1}{V}\left(\frac{\partial V}{\partial T} \right)_P

    Parameters
    ----------
    V : float
        Molar volume at `T` and `P`, [m^3/mol]
    dV_dT : float
        Derivative of molar volume with respect to `T`, [m^3/mol/K]

    Returns
    -------
    beta : float
        Isobaric coefficient of a thermal expansion, [1/K]
        
    Notes
    -----
    For an ideal gas, this expression simplified to:
    
    .. math::
        \beta = \frac{1}{T}

    Examples
    --------
    Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):
    
    >>> isobaric_expansion(0.000130229900873546, 1.58875261849113e-7)
    0.0012199599384121608

    References
    ----------
    .. [1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
       New York: McGraw-Hill Professional, 2000.
    '''
    return dV_dT/V 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:42,代碼來源:utils.py

示例12: isothermal_compressibility

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def isothermal_compressibility(V, dV_dP):
    r'''Calculate the isothermal coefficient of a compressibility, given its 
    molar volume at a certain `T` and `P`, and its derivative of molar volume
    with respect to `P`.

    .. math::
        \kappa = -\frac{1}{V}\left(\frac{\partial V}{\partial P} \right)_T

    Parameters
    ----------
    V : float
        Molar volume at `T` and `P`, [m^3/mol]
    dV_dP : float
        Derivative of molar volume with respect to `P`, [m^3/mol/Pa]

    Returns
    -------
    kappa : float
        Isothermal coefficient of a compressibility, [1/Pa]
        
    Notes
    -----
    For an ideal gas, this expression simplified to:
    
    .. math::
        \kappa = \frac{1}{P}

    Examples
    --------
    Calculated for hexane from the PR EOS at 299 K and 1 MPa (liquid):
    
    >>> isothermal_compressibility(0.000130229900873546, -2.72902118209903e-13)
    2.095541165119158e-09

    References
    ----------
    .. [1] Poling, Bruce E. The Properties of Gases and Liquids. 5th edition.
       New York: McGraw-Hill Professional, 2000.
    '''
    return -dV_dP/V 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:42,代碼來源:utils.py

示例13: calculate_derivative

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def calculate_derivative(self, T, method, order=1):
        r'''Method to calculate a derivative of a property with respect to 
        temperature, of a given order  using a specified method. Uses SciPy's 
        derivative function, with a delta of 1E-6 K and a number of points 
        equal to 2*order + 1.

        This method can be overwritten by subclasses who may perfer to add
        analytical methods for some or all methods as this is much faster.

        If the calculation does not succeed, returns the actual error
        encountered.

        Parameters
        ----------
        T : float
            Temperature at which to calculate the derivative, [K]
        method : str
            Method for which to find the derivative
        order : int
            Order of the derivative, >= 1

        Returns
        -------
        derivative : float
            Calculated derivative property, [`units/K^order`]
        '''
        return derivative(self.calculate, T, dx=1e-6, args=[method], n=order, order=1+order*2) 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:29,代碼來源:utils.py

示例14: T_dependent_property_derivative

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def T_dependent_property_derivative(self, T, order=1):
        r'''Method to obtain a derivative of a property with respect to 
        temperature, of a given order. Methods found valid by 
        `select_valid_methods` are attempted until a method succeeds. If no 
        methods are valid and succeed, None is returned.

        Calls `calculate_derivative` internally to perform the actual
        calculation.
        
        .. math::
            \text{derivative} = \frac{d (\text{property})}{d T}

        Parameters
        ----------
        T : float
            Temperature at which to calculate the derivative, [K]
        order : int
            Order of the derivative, >= 1

        Returns
        -------
        derivative : float
            Calculated derivative property, [`units/K^order`]
        '''
        if self.method:
            # retest within range
            if self.test_method_validity(T, self.method):
                try:
                    return self.calculate_derivative(T, self.method, order)
                except:  # pragma: no cover
                    pass
        sorted_valid_methods = self.select_valid_methods(T)
        for method in sorted_valid_methods:
            try:
                return self.calculate_derivative(T, method, order)
            except:
                pass
        return None 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:40,代碼來源:utils.py

示例15: calculate_derivative_P

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import derivative [as 別名]
def calculate_derivative_P(self, P, T, method, order=1):
        r'''Method to calculate a derivative of a temperature and pressure
        dependent property with respect to pressure at constant temperature,
        of a given order using a specified method. Uses SciPy's derivative 
        function, with a delta of 0.01 Pa and a number of points equal to 
        2*order + 1.

        This method can be overwritten by subclasses who may perfer to add
        analytical methods for some or all methods as this is much faster.

        If the calculation does not succeed, returns the actual error
        encountered.

        Parameters
        ----------
        P : float
            Pressure at which to calculate the derivative, [Pa]
        T : float
            Temperature at which to calculate the derivative, [K]
        method : str
            Method for which to find the derivative
        order : int
            Order of the derivative, >= 1

        Returns
        -------
        d_prop_d_P_at_T : float
            Calculated derivative property at constant temperature, 
            [`units/Pa^order`]
        '''
        f = lambda P: self.calculate_P(T, P, method)
        return derivative(f, P, dx=1e-2, n=order, order=1+order*2) 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:34,代碼來源:utils.py


注:本文中的scipy.misc.derivative方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。