當前位置: 首頁>>代碼示例>>Python>>正文


Python misc.comb方法代碼示例

本文整理匯總了Python中scipy.misc.comb方法的典型用法代碼示例。如果您正苦於以下問題:Python misc.comb方法的具體用法?Python misc.comb怎麽用?Python misc.comb使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.misc的用法示例。


在下文中一共展示了misc.comb方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mc2mnc

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def mc2mnc(mc):
    '''convert central to non-central moments, uses recursive formula
    optionally adjusts first moment to return mean

    '''
    n = len(mc)
    mean = mc[0]
    mc = [1] + list(mc)    # add zero moment = 1
    mc[1] = 0  # define central mean as zero for formula
    mnc = [1, mean] # zero and first raw moments
    for nn,m in enumerate(mc[2:]):
        n=nn+2
        mnc.append(0)
        for k in range(n+1):
            mnc[n] += comb(n,k,exact=1) * mc[k] * mean**(n-k)

    return mnc[1:] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:moment_helpers.py

示例2: mnc2mc

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def mnc2mc(mnc, wmean = True):
    '''convert non-central to central moments, uses recursive formula
    optionally adjusts first moment to return mean

    '''
    n = len(mnc)
    mean = mnc[0]
    mnc = [1] + list(mnc)    # add zero moment = 1
    mu = [] #np.zeros(n+1)
    for n,m in enumerate(mnc):
        mu.append(0)
        #[comb(n-1,k,exact=1) for k in range(n)]
        for k in range(n+1):
            mu[n] += (-1)**(n-k) * comb(n,k,exact=1) * mnc[k] * mean**(n-k)
    if wmean:
        mu[1] = mean
    return mu[1:] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:moment_helpers.py

示例3: cum2mc

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def cum2mc(kappa):
    '''convert non-central moments to cumulants
    recursive formula produces as many cumulants as moments

    References
    ----------
    Kenneth Lange: Numerical Analysis for Statisticians, page 40
    (http://books.google.ca/books?id=gm7kwttyRT0C&pg=PA40&lpg=PA40&dq=convert+cumulants+to+moments&source=web&ots=qyIaY6oaWH&sig=cShTDWl-YrWAzV7NlcMTRQV6y0A&hl=en&sa=X&oi=book_result&resnum=1&ct=result)


    '''
    mc = [1,0.0] #_kappa[0]]  #insert 0-moment and mean
    kappa0 = kappa[0]
    kappa = [1] + list(kappa)
    for nn,m in enumerate(kappa[2:]):
        n = nn+2
        mc.append(0)
        for k in range(n-1):
            mc[n] += comb(n-1,k,exact=1) * kappa[n-k]*mc[k]

    mc[1] = kappa0 # insert mean as first moments by convention
    return mc[1:] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:moment_helpers.py

示例4: cal_pvalue

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def cal_pvalue(c00, c11, c01, c10):
    """
    c00: int, argeed number on positive
    c01, c10: int, disagreed number
    c11: int, agreed number on negative
    return: p value
    """

    b = min(c01, c10)
    n = c01 + c10
    p = 0
    for i in range(b, n+1):
        cur_p = 1
        for j in range(i):
            cur_p *= ((n - j) / (2.0 * (i - j)))
        if not np.isinf(cur_p):# and n-i < 1000: 
            # print(n-i, cur_p)
            for i in range(n-i):
                cur_p /= 2.0
            p += cur_p
            # print(cur_p, p)
        # p = p + comb(c01+c10, j) / denominator
    # p /= (2 ** (c01 + c10 - 1))
    return 2 * p 
開發者ID:wentaozhu,項目名稱:adversarial-deep-structural-networks,代碼行數:26,代碼來源:cal_pvalue.py

示例5: spearmans_rho

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def spearmans_rho(X):
    """
    Calculates a generalized Spearman's rho for a data set given by X, as 
    described by "Multivariate Extensions of Spearman's Rho and Related Statistics"
    Inputs:
      X - the input data, should be a numpy array of shape = M x N, where
          M is the number of samples, and N is the dimensionality of the data
    """
    M = X.shape[0]
    N = X.shape[1]
    if N<2:
        raise ValueError('To calculate Spearman\'s Rho, need data of dimensionality >= 2')
    
    srho = 0.0
    for dim1 in range(0,N-1):
        for dim2 in range(dim1+1,N):
            (r,p) = spearmanr(X[:,dim1],X[:,dim2])
            srho = srho + r
    # normalize
    srho = srho / comb(N,2)
    return srho 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:23,代碼來源:multivariate_stats.py

示例6: kendalls_tau

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def kendalls_tau(X):
    """
    Calculates a generalized Kendall's tau for a data set given by X, as 
    described by "Multivariate Extensions of Spearman's Rho and Related Statistics"
    
    Inputs:
      X - the input data, should be a numpy array of shape = M x N, where
          M is the number of samples, and N is the dimensionality of the data
    """
    M = X.shape[0]
    N = X.shape[1]
    if N<2:
        raise ValueError('To calculate Kendall\'s Tau, need data of dimensionality >= 2')
    
    ktau = 0.0
    for dim1 in range(0,N-1):
        for dim2 in range(dim1+1,N):
            (t,p) = kendalltau(X[:,dim1],X[:,dim2])
            ktau = ktau + t
    # normalize
    ktau = ktau / comb(N,2)
    return ktau 
開發者ID:stochasticresearch,項目名稱:copula-py,代碼行數:24,代碼來源:multivariate_stats.py

示例7: index

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def index(self, text, terms=None, **kwargs):

        """
        Index all term pair distances.

        Args:
            text (Text): The source text.
            terms (list): Terms to index.
        """

        self.clear()

        # By default, use all terms.
        terms = terms or text.terms.keys()

        pairs = combinations(terms, 2)
        count = comb(len(terms), 2)

        for t1, t2 in bar(pairs, expected_size=count, every=1000):

            # Set the Bray-Curtis distance.
            score = text.score_braycurtis(t1, t2, **kwargs)
            self.set_pair(t1, t2, score) 
開發者ID:davidmcclure,項目名稱:textplot,代碼行數:25,代碼來源:matrix.py

示例8: generate_hamming_distance_payoff_distribution

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def generate_hamming_distance_payoff_distribution(max_sent_len, vocab_size, tau=1.):
    """compute the q distribution for Hamming Distance (substitution only) as in the RAML paper"""
    probs = dict()
    Z_qs = dict()
    for sent_len in range(1, max_sent_len + 1):
        counts = [1.]  # e = 0, count = 1
        for e in range(1, sent_len + 1):
            # apply the rescaling trick as in https://gist.github.com/norouzi/8c4d244922fa052fa8ec18d8af52d366
            count = comb(sent_len, e) * math.exp(-e / tau) * ((vocab_size - 1) ** (e - e / tau))
            counts.append(count)

        Z_qs[sent_len] = Z_q = sum(counts)
        prob = [count / Z_q for count in counts]
        probs[sent_len] = prob

        # print('sent_len=%d, %s' % (sent_len, prob))

    return probs, Z_qs 
開發者ID:asyml,項目名稱:texar,代碼行數:20,代碼來源:process_samples.py

示例9: ab_filter_exp_cascade

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def ab_filter_exp_cascade(self,tau, n, step = 0.001):
    """ create an ExpCascade filter and return arrays for the coefficients """
    from scipy.misc import comb
    tau = float(tau)
    n = int(n)
    if tau < 0:
        raise Exception("Negative time constants are not implemented")
    if n < 0:
        raise Exception("Negative cascade number is not allowed")
    if tau == 0:
        a = np.array([1.0])
        b = np.array([])
        return [a,b]
    tauC = tau/float(n) if n > 0 else tau
    c = np.exp(-step/tauC)
    N = n + 1
    a = np.array([(-c)**(i)*comb(N,i) for i in range(N+1)])
    b = np.array([(1.0-c)**N])
    return [a,b] 
開發者ID:jahuth,項目名稱:convis,代碼行數:21,代碼來源:numerical_filters.py

示例10: mnc2cum

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def mnc2cum(mnc):
    '''convert non-central moments to cumulants
    recursive formula produces as many cumulants as moments

    http://en.wikipedia.org/wiki/Cumulant#Cumulants_and_moments
    '''
    mnc = [1] + list(mnc)
    kappa = [1]
    for nn,m in enumerate(mnc[1:]):
        n = nn+1
        kappa.append(m)
        for k in range(1,n):
            kappa[n] -= comb(n-1,k-1,exact=1) * kappa[k]*mnc[n-k]

    return kappa[1:] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:17,代碼來源:moment_helpers.py

示例11: __init__

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def __init__(self, n0, n1):
        self.n0 = n0
        self.n1 = n1
        self.n = n = n0 + n1
        self.comball = comb(n, n1) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:7,代碼來源:runs.py

示例12: runs_prob_odd

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def runs_prob_odd(self, r):
        n0, n1 = self.n0, self.n1
        k = (r+1)//2
        tmp0 = comb(n0-1, k-1)
        tmp1 = comb(n1-1, k-2)
        tmp3 = comb(n0-1, k-2)
        tmp4 = comb(n1-1, k-1)
        return (tmp0 * tmp1 + tmp3 * tmp4)  / self.comball 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:10,代碼來源:runs.py

示例13: pdf

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def pdf(self, x, k, n, p):
        '''distribution of success runs of length k or more

        Parameters
        ----------
        x : float
            count of runs of length n
        k : int
            length of runs
        n : int
            total number of observations or trials
        p : float
            probability of success in each Bernoulli trial

        Returns
        -------
        pdf : float
            probability that x runs of length of k are observed

        Notes
        -----
        not yet vectorized

        References
        ----------
        Muselli 1996, theorem 3
        '''

        q = 1-p
        m = np.arange(x, (n+1)//(k+1)+1)[:,None]
        terms = (-1)**(m-x) * comb(m, x) * p**(m*k) * q**(m-1) \
                * (comb(n - m*k, m - 1) + q * comb(n - m*k, m))
        return terms.sum(0) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:35,代碼來源:runs.py

示例14: _munp

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def _munp(self, n, c):
        k = np.arange(0,n+1)
        val = (1.0/c)**n * np.sum(comb(n,k)*(-1)**k / (1.0+c*k),axis=0)
        return where(c*n > -1, val, inf) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:6,代碼來源:genpareto.py

示例15: lp2bp

# 需要導入模塊: from scipy import misc [as 別名]
# 或者: from scipy.misc import comb [as 別名]
def lp2bp(b, a, wo=1.0, bw=1.0):
    """
    Transform a lowpass filter prototype to a bandpass filter.

    Return an analog band-pass filter with center frequency `wo` and
    bandwidth `bw` from an analog low-pass filter prototype with unity
    cutoff frequency, in transfer function ('ba') representation.

    """
    a, b = map(atleast_1d, (a, b))
    D = len(a) - 1
    N = len(b) - 1
    artype = mintypecode((a, b))
    ma = max([N, D])
    Np = N + ma
    Dp = D + ma
    bprime = numpy.zeros(Np + 1, artype)
    aprime = numpy.zeros(Dp + 1, artype)
    wosq = wo * wo
    for j in range(Np + 1):
        val = 0.0
        for i in range(0, N + 1):
            for k in range(0, i + 1):
                if ma - i + 2 * k == j:
                    val += comb(i, k) * b[N - i] * (wosq) ** (i - k) / bw ** i
        bprime[Np - j] = val
    for j in range(Dp + 1):
        val = 0.0
        for i in range(0, D + 1):
            for k in range(0, i + 1):
                if ma - i + 2 * k == j:
                    val += comb(i, k) * a[D - i] * (wosq) ** (i - k) / bw ** i
        aprime[Dp - j] = val

    return normalize(bprime, aprime) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:37,代碼來源:filter_design.py


注:本文中的scipy.misc.comb方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。