本文整理匯總了Python中scipy.log方法的典型用法代碼示例。如果您正苦於以下問題:Python scipy.log方法的具體用法?Python scipy.log怎麽用?Python scipy.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy
的用法示例。
在下文中一共展示了scipy.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calc_dTm_HEX
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def calc_dTm_HEX(thi, tho, tci, tco):
'''
This function estimates the logarithmic temperature difference between two streams
:param thi: in temperature hot stream
:param tho: out temperature hot stream
:param tci: in temperature cold stream
:param tco: out temperature cold stream
:param flag: heat: when using for the heating case, 'cool' otherwise
:return:
dtm = logaritimic temperature difference
'''
dT1 = thi - tco
dT2 = tho - tci
if dT1 == dT2:
dTm = dT1
else:
dTm = (dT1 - dT2) / scipy.log(dT1 / dT2)
return abs(dTm.real)
示例2: calc_dTm_HEX
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def calc_dTm_HEX(thi, tho, tci, tco):
'''
This function estimates the logarithmic temperature difference between two streams
:param thi: in temperature hot stream
:param tho: out temperature hot stream
:param tci: in temperature cold stream
:param tco: out temperature cold stream
:return:
- dtm = logaritimic temperature difference
'''
dT1 = thi - tco
dT2 = tho - tci if not isclose(tho, tci) else 0.0001 # to avoid errors with temperature changes < 0.001
try:
dTm = (dT1 - dT2) / scipy.log(dT1 / dT2)
except ZeroDivisionError:
raise Exception(thi, tco, tho, tci,
"Check the emission_system database, there might be a problem with the selection of nominal temperatures")
return abs(dTm.real)
示例3: Regresion
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def Regresion(self):
t=array(self.KEq_Tab.getColumn(0)[:-1])
k=array(self.KEq_Tab.getColumn(1)[:-1])
if len(t)>=4:
if 4<=len(t)<8:
inicio=r_[0, 0, 0, 0]
f=lambda par, T: exp(par[0]+par[1]/T+par[2]*log(T)+par[3]*T)
resto=lambda par, T, k: k-f(par, T)
else:
inicio=r_[0, 0, 0, 0, 0, 0, 0, 0]
f=lambda par, T: exp(par[0]+par[1]/T+par[2]*log(T)+par[3]*T+par[4]*T**2+par[5]*T**3+par[6]*T**4+par[7]*T**5)
resto=lambda par, T, k: k-f(par, T)
ajuste=leastsq(resto,inicio,args=(t, k))
kcalc=f(ajuste[0], t)
error=(k-kcalc)/k*100
self.KEq_Dat.setColumn(0, ajuste[0])
self.KEq_Tab.setColumn(2, kcalc)
self.KEq_Tab.setColumn(3, error)
if ajuste[1] in [1, 2, 3, 4]:
self.ajuste=ajuste[0]
示例4: h_tube_Condensation_Traviss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def h_tube_Condensation_Traviss(fluid, Di, X):
"""ref Pag 558 Kakac: Boiler..."""
G = fluid.caudalmasico*4/pi/Di**2
Re = Di*G*(1-fluid.x)/fluid.Liquido.mu
F1 = 0.15*(1/X+2.85*X**-0.476)
if Re < 50:
F2 = 0.707*fluid.Liquido.Prandt*Re
elif Re < 1125:
F2 = 5*fluid.Liquido.Prandt+5*log(1+fluid.Liquido.Prandt*(0.0964*Re**0.585-1))
else:
F2 = 5*fluid.Liquido.Prandt+5*log(1+5*fluid.Liquido.Prandt)+2.5*log(0.0031*Re**0.812)
return fluid.Pr*Re**0.9*F1/F2
# Heat Exchanger design methods
示例5: _height
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def _height(P):
"""
Inverted _Pbar function
Parameters
------------
P : float
Standard barometric pressure, [Pa]
Returns
-------
Z : float
Altitude, [m]
Examples
--------
Selected point from Table 1 in [1]_
>>> "%0.0f" % _height(107478)
'-500'
"""
P_atm = P/101325.
Z = 1/2.25577e-5*(1-exp(log(P_atm)/5.2559))
return unidades.Length(Z)
示例6: _phi0
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def _phi0(self, tau, delta):
"""Contribución ideal de la energía libre de Helmholtz eq. 7.5"""
fio = fiot = fiott = fiod = fiodd = fiodt = 0
nfioni = [] # ðnao/ðni
for i, componente in enumerate(self.comp):
deltai = delta*self.rhoc/componente.rhoc
taui = componente.Tc*tau/self.Tc
fio_, fiot_, fiott_, fiod_, fiodd_, fiodt_ = componente._phi0(
componente.GERG["cp"], taui, deltai)
fio += self.xi[i]*(fio_+log(self.xi[i]))
fiot += self.xi[i]*fiot_
fiott += self.xi[i]*fiott_
fiod += self.xi[i]*fiod_
fiodd += self.xi[i]*fiodd_
fiodt += self.xi[i]*fiodt_
nfioni.append(fio_+1+log(self.xi[i]))
return fio, fiot, fiott, fiod, fiodd, fiodt, nfioni
示例7: _fug
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def _fug(self, Z, xi):
rho=self.P.atm/Z/R_atml/self.T
tita=[]
for i in range(len(self.componente)):
suma=0
for j in range(len(self.componente)):
suma+=xi[j]*(-self.Ao**0.5*self.Aoi[i]**0.5*(1-self.kij[i][j]) \
- self.Co**0.5*self.Coi[i]**0.5*(1-self.kij[i][j])**3/self.T**2 \
+ self.Do**0.5*self.Doi[i]**0.5*(1-self.kij[i][j])**4/self.T**3 \
- self.Eo**0.5*self.Eoi[i]**0.5*(1-self.kij[i][j])**5/self.T**4)
# print suma
lo=R_atml*self.T*log(rho*R_atml*self.T*xi[i]) \
+ rho*(self.Bo+self.Boi[i])*R_atml*self.T \
+ 2*rho*suma \
+ rho**2/2*(3*(self.b**2*self.bi[i])**(1./3)*R_atml*self.T-3*(self.a**2*self.ai[i])**(1./3)-3*(self.d**2*self.di[i])**(1./3)/self.T) \
+ self.alfa*rho**5/5*(3*(self.a**2*self.ai[i])**(1./3)+3*(self.d**2*self.di[i])**(1./3)/self.T) \
+ 3*rho**5/5*(self.a+self.d/self.T)*(self.alfa**2*self.alfai[i])**(1./3) \
+ 3*(self.c**2*self.ci[i])**(1./3)*rho**2/self.T**2*((1-exp(-self.gamma*rho**2))/self.gamma/rho**2-exp(-self.gamma*rho**2)/2) \
- (2*self.c*sqrt(self.gammai[i]/self.gamma)**0.5/self.gamma/self.T**2)*((1-exp(-self.gamma*rho**2))*(1+self.gamma*rho**2+self.gamma**2*rho**4/2))
tita.append(exp(lo/R_atml/self.T))
return tita
示例8: _physics
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def _physics(self, T, P, mezcla):
"""Properties of Gases calculation. Explanation in [1]_ section 1.4"""
B, B1, B2 = self.B(T)
C, C1, C2 = self.C(T)
self.Z = 1+B*(P/R/T)+(C-B**2)*(P/R/T)**2
V = self.Z*R*T/P
self.U_exc = -R*T*(B1/V+C1/2/V**2)
self.H_exc = R*T*((B-B1)/V+(2*C-C1)/2/V**2)
self.Cv_exc = -R*((2*B1+B2)/V+(2*C1+C2)/2/V**2)
self.Cp_exc = -R*(B2/V-((B-B1)**2-(C-C1)-C2/2)/V**2)
self.S_exc = -R*(log(P)+B1/V+(B**2-C+C1)/2/V**2)
self.A_exc = R*T*(log(P)+(B**2-C/2/V**2))
self.G_exc = R*T*(log(P)+B/V+(B**2+C)/2/V**2)
self.fug = P*exp(B/V+(C+B**2)/2/V**2)
示例9: _fugacity
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def _fugacity(self, Z, zi, A, B, Ai, Bi):
"""Fugacity for individual components in a mixture using the GEoS in
the Schmidt-Wenzel formulation, so the subclass must define the
parameters u and w in the EoS
Any other subclass with different formulation must overwrite this
method
"""
# Precalculation of inner sum in equation
aij = []
for ai, kiji in zip(Ai, self.kij):
suma = 0
for xj, aj, kij in zip(zi, Ai, kiji):
suma += xj*(1-kij)*(ai*aj)**0.5
aij.append(suma)
tita = []
for bi, aai in zip(Bi, aij):
rhs = bi/B*(Z-1) - log(Z-B) + A/B/(self.u-self.w)*(
bi/B-2/A*aai) * log((Z+self.u*B)/(Z+self.w*B))
tita.append(exp(rhs))
return tita
示例10: _so
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def _so(self, T):
r"""
Ideal gas entropy, referenced in API procedure 7F2.1, pag 741
.. math::
S_m^o = \sum_i x_wS_i^o - \frac{R}{M} x_i\lnx_i
Parameters
----------
T : float
Temperature, [K]
"""
s = 0
for x, xw, cmp in zip(
self.fraccion, self.fraccion_masica, self.componente):
s += xw*cmp._So(T) + R/cmp.M*x*log(x)
return unidades.SpecificHeat(s)
示例11: MuL_Parametric
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def MuL_Parametric(T, args):
r"""Calculates liquid viscosity using a paremtric equation
.. math::
\log\mu = A\left(\frac{1}{T}-\frac{1}{B}\right)
Parameters
----------
T : float
Temperature, [K]
args : list
Coefficients for equation
Returns
-------
mu : float
Liquid viscosity, [Pa·s]
Notes
-----
The parameters for several compound are in database
"""
A, B = args
mu = 10**(A*(1/T-1/B))
return unidades.Viscosity(mu, "cP")
示例12: _so
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def _so(self, T):
r"""Ideal gas entropy calculation from polinomial coefficient of
specific heat saved in database
Coefficient in database are in the form [A,B,C,D,E,F]
Explained in procedure 7A1.1, pag 543
.. math::
So = A \ln T + BT + C/2T^2 + D/3T^3 + E/4T^4 + F/5T^5
Parameters
----------
T : float
Temperature, [K]
Notes
-----
The units in the calculate ideal enthalpy are in cal/mol·K, the
reference state is set to T=298.15K
"""
A, B, C, D, E, F = self.cp
so = A*log(T) + B*T + C/2*T**2 + D/3*T**3 + E/4*T**4 + F/5*T**5
return unidades.SpecificHeat(so/self.M, "calgK")
# Physical properties
示例13: M_Goossens
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def M_Goossens(Tb, d20):
"""Calculate petroleum fractions molecular weight with the Goossens
(1971) correlation
Parameters
------------
Tb : float
Normal boiling temperature, [K]
d20 : float
Liquid density at 20ºC and 1 atm, [g/cm³]
Returns
-------
M: float
Molecular weight, [-]
Examples
--------
>>> "%.1f" % M_Goossens(306, 0.6258)["M"]
'77.0'
"""
b = 1.52869 + 0.06486*log(Tb/(1078-Tb))
M = 0.01077*Tb**b/d20
return {"M": unidades.Dimensionless(M)}
示例14: Viscosidad_liquido_blend
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def Viscosidad_liquido_blend(self, T, fraccion_masica, petro1, petro2):
"""Método de cálculo de la viscosidad de líquidos en mezclas de fracciones petrolíferas, API procedure 11A4.5, pag 1066
Los parámetros petro tienen la estructura [T1,T2,mu1,mu2]"""
#TODO: de momoento el procedimiento requiere como parámetros petro1 y petro2, matrices con cuatro elementos, dos temperaturas y sus correspondientes viscosidades, cuando se defina correctamente las fracciones petroliferas estos parámetros serán sustituidos por un simple id de fracción petrolífera
t=unidades.Temperature(T)
T1=unidades.Temperature(petro1[0])
T2=unidades.Temperature(petro1[1])
ml=(log(log(petro1[3]+0.7))-log(log(petro1[2]+0.7)))/(log(T2.R)-log(T1.R))
bl=log(log(petro1[2]+0.7))-ml*log(T1.R)
mh=(log(log(petro2[3]+0.7))-log(log(petro2[2]+0.7)))/(log(T2.R)-log(T1.R))
bh=log(log(petro2[2]+0.7))-mh*log(T1.R)
Tl=exp((log(log(petro2[2]+0.7))-bl)/ml)
Tx=exp(fraccion_masica[0]*log(Tl)+fraccion_masica[1]*log(T1.R))
Th=exp((log(log(petro1[3]+0.7))-bh)/mh)
Ty=exp(fraccion_masica[0]*log(T2.R)+fraccion_masica[1]*log(Th))
m=(log(log(petro1[3]+0.7))-log(log(petro2[2]+0.7)))/(log(Ty)-log(Tx))
b=log(log(petro2[2]+0.7))-m*log(Tx)
return exp(exp(m*log(t.R)+b))-0.7
示例15: binary_logloss
# 需要導入模塊: import scipy [as 別名]
# 或者: from scipy import log [as 別名]
def binary_logloss(p, y):
epsilon = 1e-15
p = sp.maximum(epsilon, p)
p = sp.minimum(1-epsilon, p)
res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
res *= -1.0/len(y)
return res