本文整理匯總了Python中scipy.linalg.svdvals方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.svdvals方法的具體用法?Python linalg.svdvals怎麽用?Python linalg.svdvals使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.svdvals方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_add_indep
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def test_add_indep():
x1 = np.array([0,0,0,0,0,1,1,1,2,2,2])
x2 = np.array([0,0,0,0,0,1,1,1,1,1,1])
x0 = np.ones(len(x2))
x = np.column_stack([x0, x1[:,None]*np.arange(3), x2[:,None]*np.arange(2)])
varnames = ['const'] + ['var1_%d' %i for i in np.arange(3)] \
+ ['var2_%d' %i for i in np.arange(2)]
xo, vo = add_indep(x, varnames)
assert_equal(xo, np.column_stack((x0, x1, x2)))
assert_equal((linalg.svdvals(x) > 1e-12).sum(), 3)
assert_equal(vo, ['const', 'var1_1', 'var2_1'])
示例2: rank
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def rank(X, cond=1.0e-12):
"""
Return the rank of a matrix X based on its generalized inverse,
not the SVD.
"""
X = np.asarray(X)
if len(X.shape) == 2:
import scipy.linalg as SL
D = SL.svdvals(X)
result = np.add.reduce(np.greater(D / D.max(), cond))
return int(result.astype(np.int32))
else:
return int(not np.alltrue(np.equal(X, 0.)))
示例3: rank
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def rank(X, cond=1.0e-12):
"""
Return the rank of a matrix X based on its generalized inverse,
not the SVD.
"""
from warnings import warn
warn("rank is deprecated and will be removed in 0.7."
" Use np.linalg.matrix_rank instead.", FutureWarning)
X = np.asarray(X)
if len(X.shape) == 2:
D = svdvals(X)
return int(np.add.reduce(np.greater(D / D.max(),
cond).astype(np.int32)))
else:
return int(not np.alltrue(np.equal(X, 0.)))
示例4: _process
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def _process(self, X):
"""
Perform TOPS for a given frame in order to estimate steered response
spectrum.
"""
# need more than 1 frequency band
if self.num_freq < 2:
raise ValueError('Need more than one frequency band!')
# select reference frequency
max_bin = np.argmax(np.sum(np.sum(abs(X[:,self.freq_bins,:]),axis=0),
axis=1))
f0 = self.freq_bins[max_bin]
freq = list(self.freq_bins)
freq.remove(f0)
# compute empirical cross correlation matrices
C_hat = self._compute_correlation_matrices(X)
# compute signal and noise subspace for each frequency band
F = np.zeros((self.num_freq,self.M,self.num_src), dtype='complex64')
W = np.zeros((self.num_freq,self.M,self.M-self.num_src),
dtype='complex64')
for k in range(self.num_freq):
# subspace decomposition
F[k,:,:], W[k,:,:], ws, wn = \
self._subspace_decomposition(C_hat[k,:,:])
# create transformation matrix
f = 1.0/self.nfft/self.c*1j*2*np.pi*self.fs*(np.linspace(0,self.nfft/2,
self.nfft/2+1)-f0)
Phi = np.zeros((len(f),self.M,self.num_loc), dtype='complex64')
for n in range(self.num_loc):
p_s = self.loc[:,n]
proj = np.dot(p_s,self.L)
for m in range(self.M):
Phi[:,m,n] = np.exp(f*proj[m])
# determine direction using rank test
for n in range(self.num_loc):
# form D matrix
D = np.zeros((self.num_src,(self.M-self.num_src)*(self.num_freq-1)),
dtype='complex64')
for k in range(self.num_freq-1):
Uk = np.conjugate(np.dot(np.diag(Phi[k,:,n]),
F[max_bin,:,:])).T
# F[max_bin,:,:])).T
idx = range(k*(self.M-self.num_src),(k+1)*(self.M-self.num_src))
D[:,idx] = np.dot(Uk,W[k,:,:])
#u,s,v = np.linalg.svd(D)
s = linalg.svdvals(D) # FASTER!!!
self.P[n] = 1.0/s[-1]
示例5: _fractional_matrix_power
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def _fractional_matrix_power(A, p):
"""
Compute the fractional power of a matrix.
See the fractional_matrix_power docstring in matfuncs.py for more info.
"""
A = np.asarray(A)
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected a square matrix')
if p == int(p):
return np.linalg.matrix_power(A, int(p))
# Compute singular values.
s = svdvals(A)
# Inverse scaling and squaring cannot deal with a singular matrix,
# because the process of repeatedly taking square roots
# would not converge to the identity matrix.
if s[-1]:
# Compute the condition number relative to matrix inversion,
# and use this to decide between floor(p) and ceil(p).
k2 = s[0] / s[-1]
p1 = p - np.floor(p)
p2 = p - np.ceil(p)
if p1 * k2 ** (1 - p1) <= -p2 * k2:
a = int(np.floor(p))
b = p1
else:
a = int(np.ceil(p))
b = p2
try:
R = _remainder_matrix_power(A, b)
Q = np.linalg.matrix_power(A, a)
return Q.dot(R)
except np.linalg.LinAlgError:
pass
# If p is negative then we are going to give up.
# If p is non-negative then we can fall back to generic funm.
if p < 0:
X = np.empty_like(A)
X.fill(np.nan)
return X
else:
p1 = p - np.floor(p)
a = int(np.floor(p))
b = p1
R, info = funm(A, lambda x: pow(x, b), disp=False)
Q = np.linalg.matrix_power(A, a)
return Q.dot(R)
示例6: error_norm
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def error_norm(self, comp_cov, norm='frobenius', scaling=True,
squared=True):
"""Computes the Mean Squared Error between two covariance estimators.
(In the sense of the Frobenius norm).
Parameters
----------
comp_cov : array-like, shape = [n_features, n_features]
The covariance to compare with.
norm : str
The type of norm used to compute the error. Available error types:
- 'frobenius' (default): sqrt(tr(A^t.A))
- 'spectral': sqrt(max(eigenvalues(A^t.A))
where A is the error ``(comp_cov - self.covariance_)``.
scaling : bool
If True (default), the squared error norm is divided by n_features.
If False, the squared error norm is not rescaled.
squared : bool
Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned.
If False, the error norm is returned.
Returns
-------
The Mean Squared Error (in the sense of the Frobenius norm) between
`self` and `comp_cov` covariance estimators.
"""
# compute the error
error = comp_cov - self.covariance_
# compute the error norm
if norm == "frobenius":
squared_norm = np.sum(error ** 2)
elif norm == "spectral":
squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
else:
raise NotImplementedError(
"Only spectral and frobenius norms are implemented")
# optionally scale the error norm
if scaling:
squared_norm = squared_norm / error.shape[0]
# finally get either the squared norm or the norm
if squared:
result = squared_norm
else:
result = np.sqrt(squared_norm)
return result
示例7: fit
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def fit(self, X, y=None):
"""Fits a Minimum Covariance Determinant with the FastMCD algorithm.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples
and n_features is the number of features.
y
not used, present for API consistence purpose.
Returns
-------
self : object
"""
X = check_array(X, ensure_min_samples=2, estimator='MinCovDet')
random_state = check_random_state(self.random_state)
n_samples, n_features = X.shape
# check that the empirical covariance is full rank
if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
warnings.warn("The covariance matrix associated to your dataset "
"is not full rank")
# compute and store raw estimates
raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
X, support_fraction=self.support_fraction,
cov_computation_method=self._nonrobust_covariance,
random_state=random_state)
if self.assume_centered:
raw_location = np.zeros(n_features)
raw_covariance = self._nonrobust_covariance(X[raw_support],
assume_centered=True)
# get precision matrix in an optimized way
precision = linalg.pinvh(raw_covariance)
raw_dist = np.sum(np.dot(X, precision) * X, 1)
self.raw_location_ = raw_location
self.raw_covariance_ = raw_covariance
self.raw_support_ = raw_support
self.location_ = raw_location
self.support_ = raw_support
self.dist_ = raw_dist
# obtain consistency at normal models
self.correct_covariance(X)
# re-weight estimator
self.reweight_covariance(X)
return self
示例8: fit
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def fit(self, X, y=None):
"""Fits a Minimum Covariance Determinant with the FastMCD algorithm.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples
and n_features is the number of features.
y : not used, present for API consistence purpose.
Returns
-------
self : object
Returns self.
"""
X = check_array(X, ensure_min_samples=2, estimator='MinCovDet')
random_state = check_random_state(self.random_state)
n_samples, n_features = X.shape
# check that the empirical covariance is full rank
if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
warnings.warn("The covariance matrix associated to your dataset "
"is not full rank")
# compute and store raw estimates
raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
X, support_fraction=self.support_fraction,
cov_computation_method=self._nonrobust_covariance,
random_state=random_state)
if self.assume_centered:
raw_location = np.zeros(n_features)
raw_covariance = self._nonrobust_covariance(X[raw_support],
assume_centered=True)
# get precision matrix in an optimized way
precision = linalg.pinvh(raw_covariance)
raw_dist = np.sum(np.dot(X, precision) * X, 1)
self.raw_location_ = raw_location
self.raw_covariance_ = raw_covariance
self.raw_support_ = raw_support
self.location_ = raw_location
self.support_ = raw_support
self.dist_ = raw_dist
# obtain consistency at normal models
self.correct_covariance(X)
# re-weight estimator
self.reweight_covariance(X)
return self