當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.svdvals方法代碼示例

本文整理匯總了Python中scipy.linalg.svdvals方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.svdvals方法的具體用法?Python linalg.svdvals怎麽用?Python linalg.svdvals使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.svdvals方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_add_indep

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def test_add_indep():
    x1 = np.array([0,0,0,0,0,1,1,1,2,2,2])
    x2 = np.array([0,0,0,0,0,1,1,1,1,1,1])
    x0 = np.ones(len(x2))
    x = np.column_stack([x0, x1[:,None]*np.arange(3), x2[:,None]*np.arange(2)])
    varnames = ['const'] + ['var1_%d' %i for i in np.arange(3)] \
                         + ['var2_%d' %i for i in np.arange(2)]
    xo, vo = add_indep(x, varnames)

    assert_equal(xo, np.column_stack((x0, x1, x2)))
    assert_equal((linalg.svdvals(x) > 1e-12).sum(), 3)
    assert_equal(vo, ['const', 'var1_1', 'var2_1']) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:14,代碼來源:test_catadd.py

示例2: rank

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def rank(X, cond=1.0e-12):
    """
    Return the rank of a matrix X based on its generalized inverse,
    not the SVD.
    """
    X = np.asarray(X)
    if len(X.shape) == 2:
        import scipy.linalg as SL
        D = SL.svdvals(X)
        result = np.add.reduce(np.greater(D / D.max(), cond))
        return int(result.astype(np.int32))
    else:
        return int(not np.alltrue(np.equal(X, 0.))) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:math.py

示例3: rank

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def rank(X, cond=1.0e-12):
    """
    Return the rank of a matrix X based on its generalized inverse,
    not the SVD.
    """
    from warnings import warn
    warn("rank is deprecated and will be removed in 0.7."
         " Use np.linalg.matrix_rank instead.", FutureWarning)
    X = np.asarray(X)
    if len(X.shape) == 2:
        D = svdvals(X)
        return int(np.add.reduce(np.greater(D / D.max(),
                                            cond).astype(np.int32)))
    else:
        return int(not np.alltrue(np.equal(X, 0.))) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:17,代碼來源:tools.py

示例4: _process

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def _process(self, X):
        """
        Perform TOPS for a given frame in order to estimate steered response 
        spectrum.
        """

        # need more than 1 frequency band
        if self.num_freq < 2:
            raise ValueError('Need more than one frequency band!')

        # select reference frequency
        max_bin = np.argmax(np.sum(np.sum(abs(X[:,self.freq_bins,:]),axis=0),
            axis=1))
        f0 = self.freq_bins[max_bin]
        freq = list(self.freq_bins)
        freq.remove(f0)

        # compute empirical cross correlation matrices
        C_hat = self._compute_correlation_matrices(X)

        # compute signal and noise subspace for each frequency band
        F = np.zeros((self.num_freq,self.M,self.num_src), dtype='complex64')
        W = np.zeros((self.num_freq,self.M,self.M-self.num_src), 
            dtype='complex64')
        for k in range(self.num_freq):
            # subspace decomposition
            F[k,:,:], W[k,:,:], ws, wn = \
                self._subspace_decomposition(C_hat[k,:,:])

        # create transformation matrix
        f = 1.0/self.nfft/self.c*1j*2*np.pi*self.fs*(np.linspace(0,self.nfft/2,
            self.nfft/2+1)-f0)
        Phi = np.zeros((len(f),self.M,self.num_loc), dtype='complex64')
        for n in range(self.num_loc):
            p_s = self.loc[:,n]
            proj = np.dot(p_s,self.L)
            for m in range(self.M):
                Phi[:,m,n] = np.exp(f*proj[m])

        # determine direction using rank test
        for n in range(self.num_loc):
            # form D matrix
            D = np.zeros((self.num_src,(self.M-self.num_src)*(self.num_freq-1)),
                dtype='complex64')
            for k in range(self.num_freq-1):
                Uk = np.conjugate(np.dot(np.diag(Phi[k,:,n]), 
                    F[max_bin,:,:])).T
                    # F[max_bin,:,:])).T
                idx = range(k*(self.M-self.num_src),(k+1)*(self.M-self.num_src))
                D[:,idx] = np.dot(Uk,W[k,:,:])
            #u,s,v = np.linalg.svd(D)
            s = linalg.svdvals(D)  # FASTER!!!
            self.P[n] = 1.0/s[-1] 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:55,代碼來源:tops.py

示例5: _fractional_matrix_power

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def _fractional_matrix_power(A, p):
    """
    Compute the fractional power of a matrix.

    See the fractional_matrix_power docstring in matfuncs.py for more info.

    """
    A = np.asarray(A)
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected a square matrix')
    if p == int(p):
        return np.linalg.matrix_power(A, int(p))
    # Compute singular values.
    s = svdvals(A)
    # Inverse scaling and squaring cannot deal with a singular matrix,
    # because the process of repeatedly taking square roots
    # would not converge to the identity matrix.
    if s[-1]:
        # Compute the condition number relative to matrix inversion,
        # and use this to decide between floor(p) and ceil(p).
        k2 = s[0] / s[-1]
        p1 = p - np.floor(p)
        p2 = p - np.ceil(p)
        if p1 * k2 ** (1 - p1) <= -p2 * k2:
            a = int(np.floor(p))
            b = p1
        else:
            a = int(np.ceil(p))
            b = p2
        try:
            R = _remainder_matrix_power(A, b)
            Q = np.linalg.matrix_power(A, a)
            return Q.dot(R)
        except np.linalg.LinAlgError:
            pass
    # If p is negative then we are going to give up.
    # If p is non-negative then we can fall back to generic funm.
    if p < 0:
        X = np.empty_like(A)
        X.fill(np.nan)
        return X
    else:
        p1 = p - np.floor(p)
        a = int(np.floor(p))
        b = p1
        R, info = funm(A, lambda x: pow(x, b), disp=False)
        Q = np.linalg.matrix_power(A, a)
        return Q.dot(R) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:50,代碼來源:_matfuncs_inv_ssq.py

示例6: error_norm

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def error_norm(self, comp_cov, norm='frobenius', scaling=True,
                   squared=True):
        """Computes the Mean Squared Error between two covariance estimators.
        (In the sense of the Frobenius norm).

        Parameters
        ----------
        comp_cov : array-like, shape = [n_features, n_features]
            The covariance to compare with.

        norm : str
            The type of norm used to compute the error. Available error types:
            - 'frobenius' (default): sqrt(tr(A^t.A))
            - 'spectral': sqrt(max(eigenvalues(A^t.A))
            where A is the error ``(comp_cov - self.covariance_)``.

        scaling : bool
            If True (default), the squared error norm is divided by n_features.
            If False, the squared error norm is not rescaled.

        squared : bool
            Whether to compute the squared error norm or the error norm.
            If True (default), the squared error norm is returned.
            If False, the error norm is returned.

        Returns
        -------
        The Mean Squared Error (in the sense of the Frobenius norm) between
        `self` and `comp_cov` covariance estimators.

        """
        # compute the error
        error = comp_cov - self.covariance_
        # compute the error norm
        if norm == "frobenius":
            squared_norm = np.sum(error ** 2)
        elif norm == "spectral":
            squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
        else:
            raise NotImplementedError(
                "Only spectral and frobenius norms are implemented")
        # optionally scale the error norm
        if scaling:
            squared_norm = squared_norm / error.shape[0]
        # finally get either the squared norm or the norm
        if squared:
            result = squared_norm
        else:
            result = np.sqrt(squared_norm)

        return result 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:53,代碼來源:empirical_covariance_.py

示例7: fit

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def fit(self, X, y=None):
        """Fits a Minimum Covariance Determinant with the FastMCD algorithm.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y
            not used, present for API consistence purpose.

        Returns
        -------
        self : object

        """
        X = check_array(X, ensure_min_samples=2, estimator='MinCovDet')
        random_state = check_random_state(self.random_state)
        n_samples, n_features = X.shape
        # check that the empirical covariance is full rank
        if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
            warnings.warn("The covariance matrix associated to your dataset "
                          "is not full rank")
        # compute and store raw estimates
        raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
            X, support_fraction=self.support_fraction,
            cov_computation_method=self._nonrobust_covariance,
            random_state=random_state)
        if self.assume_centered:
            raw_location = np.zeros(n_features)
            raw_covariance = self._nonrobust_covariance(X[raw_support],
                                                        assume_centered=True)
            # get precision matrix in an optimized way
            precision = linalg.pinvh(raw_covariance)
            raw_dist = np.sum(np.dot(X, precision) * X, 1)
        self.raw_location_ = raw_location
        self.raw_covariance_ = raw_covariance
        self.raw_support_ = raw_support
        self.location_ = raw_location
        self.support_ = raw_support
        self.dist_ = raw_dist
        # obtain consistency at normal models
        self.correct_covariance(X)
        # re-weight estimator
        self.reweight_covariance(X)

        return self 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:50,代碼來源:robust_covariance.py

示例8: fit

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import svdvals [as 別名]
def fit(self, X, y=None):
        """Fits a Minimum Covariance Determinant with the FastMCD algorithm.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : not used, present for API consistence purpose.

        Returns
        -------
        self : object
            Returns self.

        """
        X = check_array(X, ensure_min_samples=2, estimator='MinCovDet')
        random_state = check_random_state(self.random_state)
        n_samples, n_features = X.shape
        # check that the empirical covariance is full rank
        if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
            warnings.warn("The covariance matrix associated to your dataset "
                          "is not full rank")
        # compute and store raw estimates
        raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
            X, support_fraction=self.support_fraction,
            cov_computation_method=self._nonrobust_covariance,
            random_state=random_state)
        if self.assume_centered:
            raw_location = np.zeros(n_features)
            raw_covariance = self._nonrobust_covariance(X[raw_support],
                                                        assume_centered=True)
            # get precision matrix in an optimized way
            precision = linalg.pinvh(raw_covariance)
            raw_dist = np.sum(np.dot(X, precision) * X, 1)
        self.raw_location_ = raw_location
        self.raw_covariance_ = raw_covariance
        self.raw_support_ = raw_support
        self.location_ = raw_location
        self.support_ = raw_support
        self.dist_ = raw_dist
        # obtain consistency at normal models
        self.correct_covariance(X)
        # re-weight estimator
        self.reweight_covariance(X)

        return self 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:50,代碼來源:robust_covariance.py


注:本文中的scipy.linalg.svdvals方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。