本文整理匯總了Python中scipy.linalg.sqrtm方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.sqrtm方法的具體用法?Python linalg.sqrtm怎麽用?Python linalg.sqrtm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.sqrtm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: random_normal_draw
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def random_normal_draw(history, nb_samples, **kwargs):
"""Random normal distributed draws
Arguments:
history: numpy 2D array, with history along axis=0 and parameters
along axis=1
nb_samples: number of samples to draw
Returns:
numpy 2D array, with samples along axis=0 and parameters along axis=1
"""
scaler = StandardScaler()
scaler.fit(history)
scaled = scaler.transform(history)
sqrt_cov = sqrtm(empirical_covariance(scaled)).real
#Draw correlated random variables
#draws are generated transposed for convenience of the dot operation
draws = np.random.standard_normal((history.shape[-1], nb_samples))
draws = np.dot(sqrt_cov, draws)
draws = np.transpose(draws)
return scaler.inverse_transform(draws)
示例2: test_round_trip_random_float
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_round_trip_random_float(self):
np.random.seed(1234)
for n in range(1, 6):
M_unscaled = np.random.randn(n, n)
for scale in np.logspace(-4, 4, 9):
M = M_unscaled * scale
# Eigenvalues are related to the branch cut.
W = np.linalg.eigvals(M)
err_msg = 'M:{0} eivals:{1}'.format(M, W)
# Check sqrtm round trip because it is used within logm.
M_sqrtm, info = sqrtm(M, disp=False)
M_sqrtm_round_trip = M_sqrtm.dot(M_sqrtm)
assert_allclose(M_sqrtm_round_trip, M)
# Check logm round trip.
M_logm, info = logm(M, disp=False)
M_logm_round_trip = expm(M_logm)
assert_allclose(M_logm_round_trip, M, err_msg=err_msg)
示例3: test_bad
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_bad(self):
# See http://www.maths.man.ac.uk/~nareports/narep336.ps.gz
e = 2**-5
se = sqrt(e)
a = array([[1.0,0,0,1],
[0,e,0,0],
[0,0,e,0],
[0,0,0,1]])
sa = array([[1,0,0,0.5],
[0,se,0,0],
[0,0,se,0],
[0,0,0,1]])
n = a.shape[0]
assert_array_almost_equal(dot(sa,sa),a)
# Check default sqrtm.
esa = sqrtm(a, disp=False, blocksize=n)[0]
assert_array_almost_equal(dot(esa,esa),a)
# Check sqrtm with 2x2 blocks.
esa = sqrtm(a, disp=False, blocksize=2)[0]
assert_array_almost_equal(dot(esa,esa),a)
示例4: test_sqrtm_type_conversion_mixed_sign_or_complex_spectrum
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_sqrtm_type_conversion_mixed_sign_or_complex_spectrum(self):
complex_dtype_chars = ('F', 'D', 'G')
for matrix_as_list in (
[[1, 0], [0, -1]],
[[0, 1], [1, 0]],
[[0, 1, 0], [0, 0, 1], [1, 0, 0]]):
# check that the spectrum has the expected properties
W = scipy.linalg.eigvals(matrix_as_list)
assert_(any(w.imag or w.real < 0 for w in W))
# check complex->complex
A = np.array(matrix_as_list, dtype=complex)
A_sqrtm, info = sqrtm(A, disp=False)
assert_(A_sqrtm.dtype.char in complex_dtype_chars)
# check float->complex
A = np.array(matrix_as_list, dtype=float)
A_sqrtm, info = sqrtm(A, disp=False)
assert_(A_sqrtm.dtype.char in complex_dtype_chars)
示例5: test_al_mohy_higham_2012_experiment_1
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_al_mohy_higham_2012_experiment_1(self):
# Fractional powers of a tricky upper triangular matrix.
A = _get_al_mohy_higham_2012_experiment_1()
# Test remainder matrix power.
A_funm_sqrt, info = funm(A, np.sqrt, disp=False)
A_sqrtm, info = sqrtm(A, disp=False)
A_rem_power = _matfuncs_inv_ssq._remainder_matrix_power(A, 0.5)
A_power = fractional_matrix_power(A, 0.5)
assert_array_equal(A_rem_power, A_power)
assert_allclose(A_sqrtm, A_power)
assert_allclose(A_sqrtm, A_funm_sqrt)
# Test more fractional powers.
for p in (1/2, 5/3):
A_power = fractional_matrix_power(A, p)
A_round_trip = fractional_matrix_power(A_power, 1/p)
assert_allclose(A_round_trip, A, rtol=1e-2)
assert_allclose(np.tril(A_round_trip, 1), np.tril(A, 1))
示例6: starting_point
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def starting_point(self, random=False):
"""Heuristic to find a starting point candidate
Parameters
----------
random : `bool`
Use a random orthogonal matrix instead of identity
Returns
-------
startint_point : `np.ndarray`, shape=(n_nodes, n_nodes)
A starting point candidate
"""
sqrt_C = sqrtm(self.covariance)
sqrt_L = np.sqrt(self.mean_intensity)
if random:
random_matrix = np.random.rand(self.n_nodes, self.n_nodes)
M, _ = qr(random_matrix)
else:
M = np.eye(self.n_nodes)
initial = np.dot(np.dot(sqrt_C, M), np.diag(1. / sqrt_L))
return initial
示例7: get_subsystem_fidelity
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def get_subsystem_fidelity(statevector, trace_systems, subsystem_state):
"""
Compute the fidelity of the quantum subsystem.
Args:
statevector (list|array): The state vector of the complete system
trace_systems (list|range): The indices of the qubits to be traced.
to trace qubits 0 and 4 trace_systems = [0,4]
subsystem_state (list|array): The ground-truth state vector of the subsystem
Returns:
numpy.ndarray: The subsystem fidelity
"""
rho = np.outer(np.conj(statevector), statevector)
rho_sub = partial_trace(rho, trace_systems).data
rho_sub_in = np.outer(np.conj(subsystem_state), subsystem_state)
fidelity = np.trace(
sqrtm(
np.dot(
np.dot(sqrtm(rho_sub), rho_sub_in),
sqrtm(rho_sub)
)
)
) ** 2
return fidelity
示例8: __init__
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def __init__(self, dim, C=1.0):
self._dim = dim
if np.isscalar(C):
# Scalar
self._C2 = np.sqrt(C)
self._generator = lambda n: self._C2 * randcn((self._dim, n))
elif C.ndim == 1:
# Vector
if C.size != dim:
raise ValueError('The size of C must be {0}.'.format(dim))
self._C2 = np.sqrt(C).reshape((-1, 1))
self._generator = lambda n: self._C2 * randcn((self._dim, n))
elif C.ndim == 2:
# Matrix
if C.shape[0] != dim or C.shape[1] != dim:
raise ValueError('The shape of C must be ({0}, {0}).'.format(dim))
self._C2 = sqrtm(C)
self._generator = lambda n: self._C2 @ randcn((self._dim, n))
else:
raise ValueError(
'The covariance must be specified by a scalar, a vector of'
'size {0}, or a matrix of {0}x{0}.'.format(dim)
)
self._C = C
示例9: rand_map_with_BCSZ_dist
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def rand_map_with_BCSZ_dist(dim: int, kraus_rank: int) -> np.ndarray:
"""
Given a Hilbert space dimension dim and a Kraus rank K, returns a dim^2 by dim^2 Choi
matrix J(Λ) of a channel drawn from the BCSZ distribution with Kraus rank K [RQO]_.
.. [RQO] Random quantum operations.
Bruzda et al.
Physics Letters A 373, 320 (2009).
https://doi.org/10.1016/j.physleta.2008.11.043
https://arxiv.org/abs/0804.2361
:param dim: Hilbert space dimension.
:param kraus_rank: The number of Kraus operators in the operator sum description of the channel.
:return: dim^2 by dim^2 Choi matrix, drawn from the BCSZ distribution with Kraus rank K.
"""
# TODO: this ^^ is CPTP, might want a flag that allows for just CP quantum operations.
X = ginibre_matrix_complex(dim ** 2, kraus_rank)
rho = X @ X.conj().T
rho_red = partial_trace(rho, [0], [dim, dim])
# Note that Eqn. 8 of [RQO] uses a *row* stacking convention so in that case we would write
# Q = np.kron(np.eye(D), sqrtm(la.inv(rho_red)))
# But as we use column stacking we need:
Q = np.kron(sqrtm(la.inv(rho_red)), np.eye(dim))
Z = Q @ rho @ Q
return Z
示例10: norm1
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def norm1(matr):
"""
Returns the 1 norm of a matrix
"""
return float(_np.real(_np.trace(_sqrtm(_np.dot(matr.conj().T, matr)))))
示例11: _hack_sqrtm
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def _hack_sqrtm(A):
sqrt, _ = _spl.sqrtm(A, disp=False) # Travis found this scipy function
# to be incorrect in certain cases (we need a workaround)
if _np.any(_np.isnan(sqrt)): # this is sometimes a good fallback when sqrtm doesn't work.
ev, U = _np.linalg.eig(A)
sqrt = _np.dot(U, _np.dot(_np.diag(_np.sqrt(ev)), _np.linalg.inv(U)))
return sqrt
示例12: test_round_trip_random_complex
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_round_trip_random_complex(self):
np.random.seed(1234)
for n in range(1, 6):
M_unscaled = np.random.randn(n, n) + 1j * np.random.randn(n, n)
for scale in np.logspace(-4, 4, 9):
M = M_unscaled * scale
M_sqrtm, info = sqrtm(M, disp=False)
M_sqrtm_round_trip = M_sqrtm.dot(M_sqrtm)
assert_allclose(M_sqrtm_round_trip, M)
示例13: test_blocksizes
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_blocksizes(self):
# Make sure I do not goof up the blocksizes when they do not divide n.
np.random.seed(1234)
for n in range(1, 8):
A = np.random.rand(n, n) + 1j*np.random.randn(n, n)
A_sqrtm_default, info = sqrtm(A, disp=False, blocksize=n)
assert_allclose(A, np.linalg.matrix_power(A_sqrtm_default, 2))
for blocksize in range(1, 10):
A_sqrtm_new, info = sqrtm(A, disp=False, blocksize=blocksize)
assert_allclose(A_sqrtm_default, A_sqrtm_new)
示例14: test_strict_upper_triangular
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_strict_upper_triangular(self):
# This matrix has no square root.
A = np.array([
[0, 3, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]], dtype=float)
A_sqrtm, info = sqrtm(A, disp=False)
assert_(np.isnan(A_sqrtm).all())
示例15: test_weird_matrix
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import sqrtm [as 別名]
def test_weird_matrix(self):
# The square root of matrix B exists.
A = np.array([
[0, 0, 1],
[0, 0, 0],
[0, 1, 0]], dtype=float)
B = np.array([
[0, 1, 0],
[0, 0, 0],
[0, 0, 0]], dtype=float)
assert_array_equal(B, A.dot(A))
# But scipy sqrtm is not clever enough to find it.
B_sqrtm, info = sqrtm(B, disp=False)
assert_(np.isnan(B_sqrtm).all())