當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.solve_triangular方法代碼示例

本文整理匯總了Python中scipy.linalg.solve_triangular方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.solve_triangular方法的具體用法?Python linalg.solve_triangular怎麽用?Python linalg.solve_triangular使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.solve_triangular方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: linear_hotelling_test

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def linear_hotelling_test(X, Y, reg=0):
    n, p = X.shape
    Z = X - Y
    Z_bar = Z.mean(axis=0)

    Z -= Z_bar
    S = Z.T.dot(Z)
    S /= (n - 1)
    if reg:
        S[::p + 1] += reg
    # z' inv(S) z = z' inv(L L') z = z' inv(L)' inv(L) z = ||inv(L) z||^2
    L = linalg.cholesky(S, lower=True, overwrite_a=True)
    Linv_Z_bar = linalg.solve_triangular(L, Z_bar, lower=True, overwrite_b=True)
    stat = n * Linv_Z_bar.dot(Linv_Z_bar)

    p_val = stats.chi2.sf(stat, p)
    return p_val, stat 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:19,代碼來源:mmd_test.py

示例2: _wrap_func

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def _wrap_func(func, xdata, ydata, transform):
    if transform is None:
        def func_wrapped(params):
            return func(xdata, *params) - ydata
    elif transform.ndim == 1:
        def func_wrapped(params):
            return transform * (func(xdata, *params) - ydata)
    else:
        # Chisq = (y - yd)^T C^{-1} (y-yd)
        # transform = L such that C = L L^T
        # C^{-1} = L^{-T} L^{-1}
        # Chisq = (y - yd)^T L^{-T} L^{-1} (y-yd)
        # Define (y-yd)' = L^{-1} (y-yd)
        # by solving
        # L (y-yd)' = (y-yd)
        # and minimize (y-yd)'^T (y-yd)'
        def func_wrapped(params):
            return solve_triangular(transform, func(xdata, *params) - ydata, lower=True)
    return func_wrapped 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:minpack.py

示例3: log_multivariate_normal_density

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def log_multivariate_normal_density(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices. """
    if hasattr(linalg, 'solve_triangular'):
        # only in scipy since 0.9
        solve_triangular = linalg.solve_triangular
    else:
        # slower, but works
        solve_triangular = linalg.solve
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probabily stuck in a component with too
            # few observations, we need to reinitialize this components
            cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                      lower=True)
        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + \
                                     n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:27,代碼來源:utils.py

示例4: _log_multivariate_normal_density_full

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices.
    """
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probably stuck in a component with too
            # few observations, we need to reinitialize this components
            cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                      lower=True)
        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
                                 n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:bhmm,項目名稱:bhmm,代碼行數:22,代碼來源:gmm.py

示例5: ols_cholesky

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def ols_cholesky(A, b):
    """
    Ordinary Least-Squares Regression Coefficients
    Estimation.

    If (A.T @ A) @ x = A.T @ b and A is full rank
    then there exists an upper triangular matrix
    R such that:

    (R.T @ R) @ x = A.T @ b
    R.T @ w = A.T @ b
    R @ x = w

    Find R using Cholesky decomposition.
    """
    R = cholesky(A.T @ A)
    w = solve_triangular(R, A.T @ b, trans='T')
    return solve_triangular(R, w) 
開發者ID:fastats,項目名稱:fastats,代碼行數:20,代碼來源:ols.py

示例6: _log_multivariate_normal_density_full

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
    '''Log probability for full covariance matrices.
    '''
    n_samples, n_dimensions = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probably stuck in a component with too
            # few observations, we need to reinitialize this components
            cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dimensions),
                                      lower=True)
        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
                                 n_dimensions * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:ebattenberg,項目名稱:ggmm,代碼行數:22,代碼來源:cpu.py

示例7: pred_constraint_voilation

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def pred_constraint_voilation(self, cand, comp, vals):
        # The primary covariances for prediction.
        comp_cov   = self.cov(self.constraint_amp2, self.constraint_ls, comp)
        cand_cross = self.cov(self.constraint_amp2, self.constraint_ls, comp,
                              cand)

        # Compute the required Cholesky.
        obsv_cov  = comp_cov + self.constraint_noise*np.eye(comp.shape[0])
        obsv_chol = spla.cholesky(obsv_cov, lower=True)

        cov_grad_func = getattr(gp, 'grad_' + self.cov_func.__name__)
        cand_cross_grad = cov_grad_func(self.constraint_ls, comp, cand)

        # Predictive things.
        # Solve the linear systems.
        alpha  = spla.cho_solve((obsv_chol, True), self.ff)
        beta   = spla.solve_triangular(obsv_chol, cand_cross, lower=True)

        # Predict the marginal means and variances at candidates.
        func_m = np.dot(cand_cross.T, alpha)# + self.constraint_mean
        func_m = sps.norm.cdf(func_m*self.constraint_gain)

        return func_m

    # Compute EI over hyperparameter samples 
開發者ID:NVIDIA,項目名稱:Milano,代碼行數:27,代碼來源:gpei_constrained_chooser.py

示例8: log_prior

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def log_prior(self):
        # Normal N(mu | mu_0, Sigma / kappa_0)
        from scipy.linalg import solve_triangular
        sigma = np.linalg.inv(self.J_0)
        mu = sigma.dot(self.h_0)
        S_chol = np.linalg.cholesky(sigma)

        # Stack log pi and W
        X = np.vstack((self.logpi, self.W)).T

        lp = 0
        for d in range(self.D_out):
            x = solve_triangular(S_chol, X[d] - mu, lower=True)
            lp += -1. / 2. * np.dot(x, x) \
                  - self.D_in / 2 * np.log(2 * np.pi) \
                  - np.log(S_chol.diagonal()).sum()

        return lp

    ### HMC 
開發者ID:slinderman,項目名稱:recurrent-slds,代碼行數:22,代碼來源:transitions.py

示例9: _log_multivariate_normal_density_full

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
    """Log probability for full covariance matrices."""
    n_samples, n_dim = X.shape
    nmix = len(means)
    log_prob = np.empty((n_samples, nmix))
    for c, (mu, cv) in enumerate(zip(means, covars)):
        try:
            cv_chol = linalg.cholesky(cv, lower=True)
        except linalg.LinAlgError:
            # The model is most probably stuck in a component with too
            # few observations, we need to reinitialize this components
            try:
                cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
                                          lower=True)
            except linalg.LinAlgError:
                raise ValueError("'covars' must be symmetric, "
                                 "positive-definite")

        cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
        cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T
        log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
                                 n_dim * np.log(2 * np.pi) + cv_log_det)

    return log_prob 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:26,代碼來源:gmm.py

示例10: standardized_forecasts_error

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def standardized_forecasts_error(self):
        """
        Standardized forecast errors
        """
        if self._standardized_forecasts_error is None:
            from scipy import linalg
            self._standardized_forecasts_error = np.zeros(
                self.forecasts_error.shape, dtype=self.dtype)

            for t in range(self.forecasts_error_cov.shape[2]):
                if self.nmissing[t] > 0:
                    self._standardized_forecasts_error[:, t] = np.nan
                if self.nmissing[t] < self.k_endog:
                    mask = ~self.missing[:, t].astype(bool)
                    F = self.forecasts_error_cov[np.ix_(mask, mask, [t])]
                    upper, _ = linalg.cho_factor(F[:, :, 0])
                    self._standardized_forecasts_error[mask, t] = (
                        linalg.solve_triangular(
                            upper, self.forecasts_error[mask, t]
                        )
                    )

        return self._standardized_forecasts_error 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:25,代碼來源:kalman_filter.py

示例11: _kalman_correct

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def _kalman_correct(x, P, z, H, R, gain_factor, gain_curve):
    PHT = np.dot(P, H.T)

    S = np.dot(H, PHT) + R
    e = z - H.dot(x)
    L = cholesky(S, lower=True)
    inn = solve_triangular(L, e, lower=True)

    if gain_curve is not None:
        q = (np.dot(inn, inn) / inn.shape[0]) ** 0.5
        f = gain_curve(q)
        if f == 0:
            return inn
        L *= (q / f) ** 0.5

    K = cho_solve((L, True), PHT.T, overwrite_b=True).T
    if gain_factor is not None:
        K *= gain_factor[:, None]

    U = -K.dot(H)
    U[np.diag_indices_from(U)] += 1
    x += K.dot(z - H.dot(x))
    P[:] = U.dot(P).dot(U.T) + K.dot(R).dot(K.T)

    return inn 
開發者ID:nmayorov,項目名稱:pyins,代碼行數:27,代碼來源:filt.py

示例12: _wrap_jac

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def _wrap_jac(jac, xdata, transform):
    if transform is None:
        def jac_wrapped(params):
            return jac(xdata, *params)
    elif transform.ndim == 1:
        def jac_wrapped(params):
            return transform[:, np.newaxis] * np.asarray(jac(xdata, *params))
    else:
        def jac_wrapped(params):
            return solve_triangular(transform, np.asarray(jac(xdata, *params)), lower=True)
    return jac_wrapped 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:minpack.py

示例13: ols_qr

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def ols_qr(A, b):
    """
    Ordinary Least-Squares Regression
    Coefficients Estimation.

    This is the QR Factorization solution
    to OLS; Ax = b, A = QR, QRx = b,
    therefore Rx = Q.T * b
    """
    Q, R = qr(A, mode='economic')
    return solve_triangular(R, Q.T @ b) 
開發者ID:fastats,項目名稱:fastats,代碼行數:13,代碼來源:ols.py

示例14: predict_local_energy_and_var

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def predict_local_energy_and_var(self, x_t: AtomicEnvironment):
        """Predict the local energy of a local environment and its
        uncertainty.

        Args:
            x_t (AtomicEnvironment): Input local environment.

        Return:
            (float, float): Mean and predictive variance predicted by the GP.
        """

        if self.parallel and not self.per_atom_par:
            n_cpus = self.n_cpus
        else:
            n_cpus = 1

        _global_training_data[self.name] = self.training_data
        _global_training_labels[self.name] = self.training_labels_np

        # get kernel vector
        k_v = en_kern_vec(self.name,
                          self.energy_force_kernel,
                          x_t, self.hyps,
                          cutoffs=self.cutoffs,
                          hyps_mask=self.hyps_mask,
                          n_cpus=n_cpus,
                          n_sample=self.n_sample)

        # get predictive mean
        pred_mean = np.matmul(k_v, self.alpha)

        # get predictive variance
        v_vec = solve_triangular(self.l_mat, k_v, lower=True)
        args = from_mask_to_args(self.hyps, self.hyps_mask, self.cutoffs)

        self_kern = self.energy_kernel(x_t, x_t, *args)

        pred_var = self_kern - np.matmul(v_vec, v_vec)

        return pred_mean, pred_var 
開發者ID:mir-group,項目名稱:flare,代碼行數:42,代碼來源:gp.py

示例15: step

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_triangular [as 別名]
def step(self, x):
            z = stats.norm.rvs(size=x.shape)
            y = self.mu + np.dot(z, self.L.T)
            zx = solve_triangular(self.L, np.transpose(x - self.mu),
                                  lower=True)
            delta_lp = (0.5 * np.sum(z * z, axis=1)
                        - 0.5 * np.sum(zx * zx, axis=0))
            return y, delta_lp 
開發者ID:nchopin,項目名稱:particles,代碼行數:10,代碼來源:smc_samplers.py


注:本文中的scipy.linalg.solve_triangular方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。