當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.solve_toeplitz方法代碼示例

本文整理匯總了Python中scipy.linalg.solve_toeplitz方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.solve_toeplitz方法的具體用法?Python linalg.solve_toeplitz怎麽用?Python linalg.solve_toeplitz使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.solve_toeplitz方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_solve_equivalence

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def test_solve_equivalence():
    # For toeplitz matrices, solve_toeplitz() should be equivalent to solve().
    random = np.random.RandomState(1234)
    for n in (1, 2, 3, 10):
        c = random.randn(n)
        if random.rand() < 0.5:
            c = c + 1j * random.randn(n)
        r = random.randn(n)
        if random.rand() < 0.5:
            r = r + 1j * random.randn(n)
        y = random.randn(n)
        if random.rand() < 0.5:
            y = y + 1j * random.randn(n)

        # Check equivalence when both the column and row are provided.
        actual = solve_toeplitz((c,r), y)
        desired = solve(toeplitz(c, r=r), y)
        assert_allclose(actual, desired)

        # Check equivalence when the column is provided but not the row.
        actual = solve_toeplitz(c, b=y)
        desired = solve(toeplitz(c), y)
        assert_allclose(actual, desired) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_solve_toeplitz.py

示例2: test_unstable

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def test_unstable():
    # this is a "Gaussian Toeplitz matrix", as mentioned in Example 2 of
    # I. Gohbert, T. Kailath and V. Olshevsky "Fast Gaussian Elimination with
    # Partial Pivoting for Matrices with Displacement Structure"
    # Mathematics of Computation, 64, 212 (1995), pp 1557-1576
    # which can be unstable for levinson recursion.

    # other fast toeplitz solvers such as GKO or Burg should be better.
    random = np.random.RandomState(1234)
    n = 100
    c = 0.9 ** (np.arange(n)**2)
    y = random.randn(n)

    solution1 = solve_toeplitz(c, b=y)
    solution2 = solve(toeplitz(c), y)

    assert_allclose(solution1, solution2) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_solve_toeplitz.py

示例3: test_multiple_rhs

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def test_multiple_rhs():
    random = np.random.RandomState(1234)
    c = random.randn(4)
    r = random.randn(4)
    for offset in [0, 1j]:
        for yshape in ((4,), (4, 3), (4, 3, 2)):
            y = random.randn(*yshape) + offset
            actual = solve_toeplitz((c,r), b=y)
            desired = solve(toeplitz(c, r=r), y)
            assert_equal(actual.shape, yshape)
            assert_equal(desired.shape, yshape)
            assert_allclose(actual, desired) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:14,代碼來源:test_solve_toeplitz.py

示例4: test_native_list_arguments

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def test_native_list_arguments():
    c = [1,2,4,7]
    r = [1,3,9,12]
    y = [5,1,4,2]
    actual = solve_toeplitz((c,r), y)
    desired = solve(toeplitz(c, r=r), y)
    assert_allclose(actual, desired) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_solve_toeplitz.py

示例5: test_zero_diag_error

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def test_zero_diag_error():
    # The Levinson-Durbin implementation fails when the diagonal is zero.
    random = np.random.RandomState(1234)
    n = 4
    c = random.randn(n)
    r = random.randn(n)
    y = random.randn(n)
    c[0] = 0
    assert_raises(np.linalg.LinAlgError,
        solve_toeplitz, (c, r), b=y) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:test_solve_toeplitz.py

示例6: test_wikipedia_counterexample

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def test_wikipedia_counterexample():
    # The Levinson-Durbin implementation also fails in other cases.
    # This example is from the talk page of the wikipedia article.
    random = np.random.RandomState(1234)
    c = [2, 2, 1]
    y = random.randn(3)
    assert_raises(np.linalg.LinAlgError, solve_toeplitz, c, b=y) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_solve_toeplitz.py

示例7: mfbe2lsf

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def mfbe2lsf(mfbe, lsf_order):

    NFFT = 512
    M = get_filterbank(n_filters=mfbe.shape[1], NFFT=NFFT, normalize=False, htk=True)

    M_inv = pinv(M)
    p = lsf_order

    lsf = np.zeros(( len(mfbe), lsf_order), dtype=np.float64)
    spec = np.zeros((len(mfbe), NFFT/2+1), dtype=np.float64)

    for i, mfbe_vec in enumerate(mfbe):
    
        # invert mel filterbank
        spec_vec = np.dot(M_inv, np.power(10, mfbe_vec))

        # floor reconstructed spectrum
        spec_vec = np.maximum(spec_vec, 1e-9)
 
        # squared magnitude 2-sided spectrum
        twoside = np.r_[spec_vec, np.flipud(spec_vec[1:-1])]
        twoside = np.square(twoside) 
        r = np.fft.ifft(twoside)
        r = r.real

        # reference from talkbox
        # a,_,_ = TB.levinson(r, order=p)
  
        # levinson-durbin
        a = LA.solve_toeplitz(r[0:p],r[1:p+1])
        a = np.r_[1.0, -1.0*a]
   
        lsf[i,:] = poly2lsf(a)
   
        # reconstructed all-pole spectrum
        w, H = freqz(b=1.0, a=a, worN=NFFT, whole=True)
        spec[i,:] = np.abs(H[:(NFFT/2+1)])
            
    return lsf, spec 
開發者ID:ljuvela,項目名稱:ResGAN,代碼行數:41,代碼來源:get_mfcc.py

示例8: spec2lsf

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def spec2lsf(spec, lsf_order=30):

    NFFT = 2*(spec.shape[0]-1)
    n_frames = spec.shape[1]

    p = lsf_order

    lsf = np.zeros(( n_frames, lsf_order), dtype=np.float64)
    spec_rec = np.zeros(spec.shape)

    for i, spec_vec in enumerate(spec.T):
    
        # floor reconstructed spectrum
        spec_vec = np.maximum(spec_vec, 1e-9)
 
        # squared magnitude 2-sided spectrum
        twoside = np.r_[spec_vec, np.flipud(spec_vec[1:-1])]
        twoside = np.square(twoside) 
        r = np.fft.ifft(twoside)
        r = r.real
  
        # levinson-durbin
        a = LA.solve_toeplitz(r[0:p],r[1:p+1])
        a = np.r_[1.0, -1.0*a]
   
        lsf[i,:] = poly2lsf(a)
   
        # reconstructed all-pole spectrum
        w, H = freqz(b=1.0, a=a, worN=NFFT, whole=True)
        spec_rec[:,i] = np.abs(H[:(NFFT/2+1)])
            
    return lsf, spec_rec 
開發者ID:ljuvela,項目名稱:ResGAN,代碼行數:34,代碼來源:get_mfcc.py

示例9: LS_Filter_Toeplitz

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def LS_Filter_Toeplitz(refChannel, srvChannel, filterLen, peek=10, 
        return_filter=False):
    '''Block east squares adaptive filter. Computes filter coefficients using
    scipy's solve_toeplitz function. This assumes the autocorrelation matrix of 
    refChannel is Hermitian and Toeplitz (i.e. wide the reference signal is
    wide sense stationary). Faster than the direct matrix inversion method but
    inaccurate if the assumptions are violated. 
    
    Parameters:
        refChannel:     Array containing the reference channel signal
        srvChannel:     Array containing the surveillance channel signal
        filterLen:   Length of the least squares filter (in samples)
        peek:           Number of noncausal filter taps. Set to zero for a 
                        causal filter. If nonzero, clutter estimates can depend 
                        on future values of the reference signal (this helps 
                        sometimes)
        return_filter:  Boolean indicating whether to return the filter taps

    Returns:
        srvChannelFiltered: Surveillance channel signal with clutter removed
        filterTaps:     (optional) least squares filter taps

    '''

    if refChannel.shape != srvChannel.shape:
        raise ValueError('Input vectors must have the same length')

    # shift reference channel because for some reason the filtering works 
    # better when you allow the clutter filter to be noncausal
    refChannelShift = np.roll(refChannel, -1*peek)

    # compute the first column of the autocorelation matrix of ref
    autocorrRef = xcorr(refChannelShift, refChannelShift, 0, 
        filterLen + peek - 1)

    # compute the cross-correlation of ref and srv
    xcorrSrvRef = xcorr(srvChannel, refChannelShift, 0, 
        filterLen + peek - 1)

    # solve the Toeplitz least squares problem
    filterTaps = solve_toeplitz(autocorrRef, xcorrSrvRef)

    # compute clutter signal and remove from surveillance Channel
    clutter = np.convolve(refChannelShift, filterTaps, mode = 'full')
    clutter = clutter[0:srvChannel.shape[0]]
    srvChannelFiltered = srvChannel - clutter

    if return_filter:
        return srvChannelFiltered, filterTaps
    else:
        return srvChannelFiltered 
開發者ID:Max-Manning,項目名稱:passiveRadar,代碼行數:53,代碼來源:clutter_removal.py

示例10: solve_unit_norm_dual

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def solve_unit_norm_dual(lhs, rhs, lambd0, factr=1e7, debug=False,
                         lhs_is_toeplitz=False):
    if np.all(rhs == 0):
        return np.zeros(lhs.shape[0]), 0.

    n_atoms = lambd0.shape[0]
    n_times_atom = lhs.shape[0] // n_atoms

    # precompute SVD
    # U, s, V = linalg.svd(lhs)

    if lhs_is_toeplitz:
        # first column of the toeplitz matrix lhs
        lhs_c = lhs[0, :]

        # lhs will not stay toeplitz if we add different lambd on the diagonal
        assert n_atoms == 1

        def x_star(lambd):
            lambd += 1e-14  # avoid numerical issues
            # lhs_inv = np.dot(V.T / (s + np.repeat(lambd, n_times_atom)), U.T)
            # return np.dot(lhs_inv, rhs)
            lhs_c_copy = lhs_c.copy()
            lhs_c_copy[0] += lambd
            return linalg.solve_toeplitz(lhs_c_copy, rhs)

    else:

        def x_star(lambd):
            lambd += 1e-14  # avoid numerical issues
            # lhs_inv = np.dot(V.T / (s + np.repeat(lambd, n_times_atom)), U.T)
            # return np.dot(lhs_inv, rhs)
            return linalg.solve(lhs + np.diag(np.repeat(lambd, n_times_atom)),
                                rhs)

    def dual(lambd):
        x_hats = x_star(lambd)
        norms = linalg.norm(x_hats.reshape(-1, n_times_atom), axis=1)
        return (x_hats.T.dot(lhs).dot(x_hats) - 2 * rhs.T.dot(x_hats) + np.dot(
            lambd, norms ** 2 - 1.))

    def grad_dual(lambd):
        x_hats = x_star(lambd).reshape(-1, n_times_atom)
        return linalg.norm(x_hats, axis=1) ** 2 - 1.

    def func(lambd):
        return -dual(lambd)

    def grad(lambd):
        return -grad_dual(lambd)

    bounds = [(0., None) for idx in range(0, n_atoms)]
    if debug:
        assert optimize.check_grad(func, grad, lambd0) < 1e-5
    lambd_hats, _, _ = optimize.fmin_l_bfgs_b(func, x0=lambd0, fprime=grad,
                                              bounds=bounds, factr=factr)
    x_hat = x_star(lambd_hats)
    return x_hat, lambd_hats 
開發者ID:alphacsc,項目名稱:alphacsc,代碼行數:60,代碼來源:update_d.py

示例11: pade

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_toeplitz [as 別名]
def pade(time,dipole):
    damp_const = 120.0
    dipole = np.asarray(dipole) - dipole[0]
      
    stepsize = time[1] - time[0]
    #print dipole
    damp = np.exp(-(stepsize*np.arange(len(dipole)))/float(damp_const))
    dipole *= damp
    M = len(dipole)
    N = int(np.floor(M / 2))

    #print "N = ", N
    num_pts = 20000
    if N > num_pts:
        N = num_pts
    #print "Trimmed points to: ", N

    # G and d are (N-1) x (N-1)
    # d[k] = -dipole[N+k] for k in range(1,N)
    d = -dipole[N+1:2*N]

    try:
        from scipy.linalg import toeplitz, solve_toeplitz
    except ImportError:
        print("You'll need SciPy version >= 0.17.0")

    try:
        # Instead, form G = (c,r) as toeplitz
        #c = dipole[N:2*N-1]
        #r = np.hstack((dipole[1],dipole[N-1:1:-1]))
        b = solve_toeplitz((dipole[N:2*N-1],\
            np.hstack((dipole[1],dipole[N-1:1:-1]))),d,check_finite=False)
    except np.linalg.linalg.LinAlgError:  
        # OLD CODE: sometimes more stable
        # G[k,m] = dipole[N - m + k] for m,k in range(1,N)
        G = dipole[N + np.arange(1,N)[:,None] - np.arange(1,N)]
        b = np.linalg.solve(G,d)

    # Now make b Nx1 where b0 = 1
    b = np.hstack((1,b))

    # b[m]*dipole[k-m] for k in range(0,N), for m in range(k)
    a = np.dot(np.tril(toeplitz(dipole[0:N])),b)
    p = np.poly1d(a)
    q = np.poly1d(b)

    # If you want energies greater than 2*27.2114 eV, you'll need to change
    # the default frequency range to something greater.

    #frequency = np.arange(0.00,2.0,0.00005)
    frequency = np.arange(0.3,0.75,0.0002)

    W = np.exp(-1j*frequency*stepsize)

    fw = p(W)/q(W)

    return fw, frequency 
開發者ID:jjgoings,項目名稱:McMurchie-Davidson,代碼行數:59,代碼來源:spectrum.py


注:本文中的scipy.linalg.solve_toeplitz方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。