本文整理匯總了Python中scipy.linalg.solve_continuous_are方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.solve_continuous_are方法的具體用法?Python linalg.solve_continuous_are怎麽用?Python linalg.solve_continuous_are使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.solve_continuous_are方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_care
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_continuous_are [as 別名]
def build_care(feedback_linearizable_output, Q):
"""Build a quadratic CLF from a FeedbackLinearizableOutput with auxilliary control gain matrix, by solving the continuous algebraic Riccati equation (CARE).
CARE is
F'P + PF - PGG'P = -Q
for specified Q.
Outputs a QuadraticControlLyapunovFunction.
Inputs:
Positive definite matrix for CTLE, Q: numpy array (p, p)
"""
F = feedback_linearizable_output.F
G = feedback_linearizable_output.G
R = identity(G.shape[1])
P = solve_continuous_are(F, G, Q, R)
alpha = min(eigvals(Q)) / max(eigvals(P))
return QuadraticControlLyapunovFunction(feedback_linearizable_output, P, alpha)
示例2: LQR
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_continuous_are [as 別名]
def LQR(v_target, wheelbase, Q, R):
# print(v_target,wheelbase,Q,R)
A= np.matrix([[0, v_target*(5./18.)], [0, 0]])
B = np.matrix([[0], [(v_target/wheelbase)*(5./18.)]])
V = np.matrix(linalg.solve_continuous_are(A, B, Q, R))
K = np.matrix(linalg.inv(R) * (B.T * V))
return K
# create the Robot instance.
示例3: continuous_LQR
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_continuous_are [as 別名]
def continuous_LQR(speed, Q, R, wheelbase=2.995):
A= np.matrix([[0, speed], [0, 0]])
B = np.matrix([[0], [(speed/wheelbase)]])
V = np.matrix(linalg.solve_continuous_are(A, B, Q, R))
K = np.matrix(linalg.inv(R) * (B.T * V))
return K
示例4: control_systems
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_continuous_are [as 別名]
def control_systems(request):
ct_sys, ref = request.param
Ac, Bc, Cc = ct_sys.data
Dc = np.zeros((Cc.shape[0], 1))
Q = np.eye(Ac.shape[0])
R = np.eye(Bc.shape[1] if len(Bc.shape) > 1 else 1)
Sc = linalg.solve_continuous_are(Ac, Bc.reshape(-1, 1), Q, R,)
Kc = linalg.solve(R, Bc.T @ Sc).reshape(1, -1)
ct_ctr = LTISystem(Kc)
evals = np.sort(np.abs(
linalg.eig(Ac, left=False, right=False, check_finite=False)
))
dT = 1/(2*evals[-1])
Tsim = (8/np.min(evals[~np.isclose(evals, 0)])
if np.sum(np.isclose(evals[np.nonzero(evals)], 0)) > 0
else 8
)
dt_data = signal.cont2discrete((Ac, Bc.reshape(-1, 1), Cc, Dc), dT)
Ad, Bd, Cd, Dd = dt_data[:-1]
Sd = linalg.solve_discrete_are(Ad, Bd.reshape(-1, 1), Q, R,)
Kd = linalg.solve(Bd.T @ Sd @ Bd + R, Bd.T @ Sd @ Ad)
dt_sys = LTISystem(Ad, Bd, dt=dT)
dt_sys.initial_condition = ct_sys.initial_condition
dt_ctr = LTISystem(Kd, dt=dT)
yield ct_sys, ct_ctr, dt_sys, dt_ctr, ref, Tsim
示例5: test_solve_generalized_continuous_are
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_continuous_are [as 別名]
def test_solve_generalized_continuous_are():
cases = [
# Two random examples differ by s term
# in the absence of any literature for demanding examples.
(np.array([[2.769230e-01, 8.234578e-01, 9.502220e-01],
[4.617139e-02, 6.948286e-01, 3.444608e-02],
[9.713178e-02, 3.170995e-01, 4.387444e-01]]),
np.array([[3.815585e-01, 1.868726e-01],
[7.655168e-01, 4.897644e-01],
[7.951999e-01, 4.455862e-01]]),
np.eye(3),
np.eye(2),
np.array([[6.463130e-01, 2.760251e-01, 1.626117e-01],
[7.093648e-01, 6.797027e-01, 1.189977e-01],
[7.546867e-01, 6.550980e-01, 4.983641e-01]]),
np.zeros((3, 2)),
None),
(np.array([[2.769230e-01, 8.234578e-01, 9.502220e-01],
[4.617139e-02, 6.948286e-01, 3.444608e-02],
[9.713178e-02, 3.170995e-01, 4.387444e-01]]),
np.array([[3.815585e-01, 1.868726e-01],
[7.655168e-01, 4.897644e-01],
[7.951999e-01, 4.455862e-01]]),
np.eye(3),
np.eye(2),
np.array([[6.463130e-01, 2.760251e-01, 1.626117e-01],
[7.093648e-01, 6.797027e-01, 1.189977e-01],
[7.546867e-01, 6.550980e-01, 4.983641e-01]]),
np.ones((3, 2)),
None)
]
min_decimal = (10, 10)
def _test_factory(case, dec):
"""Checks if X = A'XA-(A'XB)(R+B'XB)^-1(B'XA)+Q) is true"""
a, b, q, r, e, s, knownfailure = case
if knownfailure:
pytest.xfail(reason=knownfailure)
x = solve_continuous_are(a, b, q, r, e, s)
res = a.conj().T.dot(x.dot(e)) + e.conj().T.dot(x.dot(a)) + q
out_fact = e.conj().T.dot(x).dot(b) + s
res -= out_fact.dot(solve(np.atleast_2d(r), out_fact.conj().T))
assert_array_almost_equal(res, np.zeros_like(res), decimal=dec)
for ind, case in enumerate(cases):
_test_factory(case, min_decimal[ind])
示例6: test_are_validate_args
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_continuous_are [as 別名]
def test_are_validate_args():
def test_square_shape():
nsq = np.ones((3, 2))
sq = np.eye(3)
for x in (solve_continuous_are, solve_discrete_are):
assert_raises(ValueError, x, nsq, 1, 1, 1)
assert_raises(ValueError, x, sq, sq, nsq, 1)
assert_raises(ValueError, x, sq, sq, sq, nsq)
assert_raises(ValueError, x, sq, sq, sq, sq, nsq)
def test_compatible_sizes():
nsq = np.ones((3, 2))
sq = np.eye(4)
for x in (solve_continuous_are, solve_discrete_are):
assert_raises(ValueError, x, sq, nsq, 1, 1)
assert_raises(ValueError, x, sq, sq, sq, sq, sq, nsq)
assert_raises(ValueError, x, sq, sq, np.eye(3), sq)
assert_raises(ValueError, x, sq, sq, sq, np.eye(3))
assert_raises(ValueError, x, sq, sq, sq, sq, np.eye(3))
def test_symmetry():
nsym = np.arange(9).reshape(3, 3)
sym = np.eye(3)
for x in (solve_continuous_are, solve_discrete_are):
assert_raises(ValueError, x, sym, sym, nsym, sym)
assert_raises(ValueError, x, sym, sym, sym, nsym)
def test_singularity():
sing = 1e12 * np.ones((3, 3))
sing[2, 2] -= 1
sq = np.eye(3)
for x in (solve_continuous_are, solve_discrete_are):
assert_raises(ValueError, x, sq, sq, sq, sq, sing)
assert_raises(ValueError, solve_continuous_are, sq, sq, sq, sing)
def test_finiteness():
nm = np.ones((2, 2)) * np.nan
sq = np.eye(2)
for x in (solve_continuous_are, solve_discrete_are):
assert_raises(ValueError, x, nm, sq, sq, sq)
assert_raises(ValueError, x, sq, nm, sq, sq)
assert_raises(ValueError, x, sq, sq, nm, sq)
assert_raises(ValueError, x, sq, sq, sq, nm)
assert_raises(ValueError, x, sq, sq, sq, sq, nm)
assert_raises(ValueError, x, sq, sq, sq, sq, sq, nm)
示例7: control
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_continuous_are [as 別名]
def control(self, arm, x_des=None):
"""Generates a control signal to move the
arm to the specified target.
arm Arm: the arm model being controlled
des list: the desired system position
x_des np.array: desired task-space force,
system goes to self.target if None
"""
if self.u is None:
self.u = np.zeros(arm.DOF)
self.Q = np.zeros((arm.DOF*2, arm.DOF*2))
self.Q[:arm.DOF, :arm.DOF] = np.eye(arm.DOF) * 1000.0
self.R = np.eye(arm.DOF) * 0.001
# calculate desired end-effector acceleration
if x_des is None:
self.x = arm.x
x_des = self.x - self.target
self.arm, state = self.copy_arm(arm)
A, B = self.calc_derivs(state, self.u)
if self.solve_continuous is True:
X = sp_linalg.solve_continuous_are(A, B, self.Q, self.R)
K = np.dot(np.linalg.pinv(self.R), np.dot(B.T, X))
else:
X = sp_linalg.solve_discrete_are(A, B, self.Q, self.R)
K = np.dot(np.linalg.pinv(self.R + np.dot(B.T, np.dot(X, B))), np.dot(B.T, np.dot(X, A)))
# transform the command from end-effector space to joint space
J = self.arm.gen_jacEE()
u = np.hstack([np.dot(J.T, x_des), arm.dq])
self.u = -np.dot(K, u)
if self.write_to_file is True:
# feed recorders their signals
self.u_recorder.record(0.0, self.u)
self.xy_recorder.record(0.0, self.x)
self.dist_recorder.record(0.0, self.target - self.x)
# add in any additional signals
for addition in self.additions:
self.u += addition.generate(self.u, arm)
return self.u