本文整理匯總了Python中scipy.linalg.solve_banded方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.solve_banded方法的具體用法?Python linalg.solve_banded怎麽用?Python linalg.solve_banded使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.solve_banded方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _radau
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_banded [as 別名]
def _radau(alpha, beta, xr):
"""From <http://www.scientificpython.net/pyblog/radau-quadrature>:
Compute the Radau nodes and weights with the preassigned node xr.
Based on the section 7 of the paper
Some modified matrix eigenvalue problems,
Gene Golub,
SIAM Review Vol 15, No. 2, April 1973, pp.318--334.
"""
from scipy.linalg import solve_banded
n = len(alpha) - 1
f = numpy.zeros(n)
f[-1] = beta[-1]
A = numpy.vstack((numpy.sqrt(beta), alpha - xr))
J = numpy.vstack((A[:, 0:-1], A[0, 1:]))
delta = solve_banded((1, 1), J, f)
alphar = alpha.copy()
alphar[-1] = xr + delta[-1]
x, w = scheme_from_rc(alphar, beta, mode="numpy")
return x, w
示例2: _get_natural_f
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_banded [as 別名]
def _get_natural_f(knots):
"""Returns mapping of natural cubic spline values to 2nd derivatives.
.. note:: See 'Generalized Additive Models', Simon N. Wood, 2006, pp 145-146
:param knots: The 1-d array knots used for cubic spline parametrization,
must be sorted in ascending order.
:return: A 2-d array mapping natural cubic spline values at
knots to second derivatives.
:raise ImportError: if scipy is not found, required for
``linalg.solve_banded()``
"""
try:
from scipy import linalg
except ImportError: # pragma: no cover
raise ImportError("Cubic spline functionality requires scipy.")
h = knots[1:] - knots[:-1]
diag = (h[:-1] + h[1:]) / 3.
ul_diag = h[1:-1] / 6.
banded_b = np.array([np.r_[0., ul_diag], diag, np.r_[ul_diag, 0.]])
d = np.zeros((knots.size - 2, knots.size))
for i in range(knots.size - 2):
d[i, i] = 1. / h[i]
d[i, i + 2] = 1. / h[i + 1]
d[i, i + 1] = - d[i, i] - d[i, i + 2]
fm = linalg.solve_banded((1, 1), banded_b, d)
return np.vstack([np.zeros(knots.size), fm, np.zeros(knots.size)])
# Cyclic Cubic Regression Splines
示例3: __interpolateSpline__
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_banded [as 別名]
def __interpolateSpline__(self):
"""Calculate natural spline coefficients that fit the data exactly."""
# Get x and y values for all supplied points
x = self.source[:, 0]
y = self.source[:, 1]
mdim = len(x)
h = [x[i + 1] - x[i] for i in range(0, mdim - 1)]
# Initialize the matrix
Ab = np.zeros((3, mdim))
# Construct the Ab banded matrix and B vector
Ab[1, 0] = 1 # A[0, 0] = 1
B = [0]
for i in range(1, mdim - 1):
Ab[2, i - 1] = h[i - 1] # A[i, i - 1] = h[i - 1]
Ab[1, i] = 2 * (h[i] + h[i - 1]) # A[i, i] = 2*(h[i] + h[i - 1])
Ab[0, i + 1] = h[i] # A[i, i + 1] = h[i]
B.append(3 * ((y[i + 1] - y[i]) / (h[i]) - (y[i] - y[i - 1]) / (h[i - 1])))
Ab[1, mdim - 1] = 1 # A[-1, -1] = 1
B.append(0)
# Solve the system for c coefficients
c = linalg.solve_banded((1, 1), Ab, B, True, True)
# Calculate other coefficients
b = [
((y[i + 1] - y[i]) / h[i] - h[i] * (2 * c[i] + c[i + 1]) / 3)
for i in range(0, mdim - 1)
]
d = [(c[i + 1] - c[i]) / (3 * h[i]) for i in range(0, mdim - 1)]
# Store coefficients
self.__splineCoefficients__ = np.array([y[0:-1], b, c[0:-1], d])
示例4: _lobatto
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_banded [as 別名]
def _lobatto(alpha, beta, xl1, xl2):
"""Compute the Lobatto nodes and weights with the preassigned node xl1, xl2.
Based on the section 7 of the paper
Some modified matrix eigenvalue problems,
Gene Golub,
SIAM Review Vol 15, No. 2, April 1973, pp.318--334,
and
http://www.scientificpython.net/pyblog/radau-quadrature
"""
from scipy.linalg import solve_banded, solve
n = len(alpha) - 1
en = numpy.zeros(n)
en[-1] = 1
A1 = numpy.vstack((numpy.sqrt(beta), alpha - xl1))
J1 = numpy.vstack((A1[:, 0:-1], A1[0, 1:]))
A2 = numpy.vstack((numpy.sqrt(beta), alpha - xl2))
J2 = numpy.vstack((A2[:, 0:-1], A2[0, 1:]))
g1 = solve_banded((1, 1), J1, en)
g2 = solve_banded((1, 1), J2, en)
C = numpy.array(((1, -g1[-1]), (1, -g2[-1])))
xl = numpy.array((xl1, xl2))
ab = solve(C, xl)
alphal = alpha
alphal[-1] = ab[0]
betal = beta
betal[-1] = ab[1]
x, w = scheme_from_rc(alphal, betal, mode="numpy")
return x, w
示例5: SolveBanded
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_banded [as 別名]
def SolveBanded(A, D, bw=3):
# Find the diagonals
ud = np.insert(np.diag(A,1), 0, 0) # upper diagonal
d = np.diag(A) # main diagonal
ld = np.insert(np.diag(A,-1), len(d)-1, 0) # lower diagonal
# simplified matrix
ab = np.matrix([
ud,
d,
ld,
])
#ds9(ab)
return solve_banded((1, 1), ab, D )
示例6: __init__
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_banded [as 別名]
def __init__(self, x, y):
x = np.asarray(x, dtype=float)
y = np.asarray(y, dtype=float)
n = x.shape[0]
dx = np.diff(x)
dy = np.diff(y, axis=0)
dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1))
c = np.empty((3, n - 1) + y.shape[1:])
if n > 2:
A = np.ones((2, n))
b = np.empty((n,) + y.shape[1:])
b[0] = 0
b[1:] = 2 * dy / dxr
s = solve_banded((1, 0), A, b, overwrite_ab=True, overwrite_b=True,
check_finite=False)
c[0] = np.diff(s, axis=0) / (2 * dxr)
c[1] = s[:-1]
c[2] = y[:-1]
else:
c[0] = 0
c[1] = dy / dxr
c[2] = y[:-1]
super(_QuadraticSpline, self).__init__(c, x)
示例7: _lobatto
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve_banded [as 別名]
def _lobatto(coefficients, preassigned):
"""
Compute the Lobatto nodes and weights with the preassigned value pair.
Based on the section 7 of the paper
Some modified matrix eigenvalue problems,
Gene Golub,
SIAM Review Vol 15, No. 2, April 1973, pp.318--334,
and
http://www.scientificpython.net/pyblog/radau-quadrature
Args:
coefficients (numpy.ndarray):
Three terms recurrence coefficients.
preassigned (Tuple[float, float]):
Values that are assume to be fixed.
"""
alpha = numpy.array(coefficients[0])
beta = numpy.array(coefficients[1])
vec_en = numpy.zeros(len(alpha)-1)
vec_en[-1] = 1
mat_a1 = numpy.vstack((numpy.sqrt(beta), alpha-preassigned[0]))
mat_j1 = numpy.vstack((mat_a1[:, 0:-1], mat_a1[0, 1:]))
mat_a2 = numpy.vstack((numpy.sqrt(beta), alpha - preassigned[1]))
mat_j2 = numpy.vstack((mat_a2[:, 0:-1], mat_a2[0, 1:]))
mat_g1 = solve_banded((1, 1), mat_j1, vec_en)
mat_g2 = solve_banded((1, 1), mat_j2, vec_en)
mat_c = numpy.array(((1, -mat_g1[-1]), (1, -mat_g2[-1])))
alpha[-1], beta[-1] = solve(mat_c, preassigned)
return numpy.array([alpha, beta])