本文整理匯總了Python中scipy.linalg.solve方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.solve方法的具體用法?Python linalg.solve怎麽用?Python linalg.solve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.solve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_mtx_obj
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def compute_mtx_obj(GtG_lst, Tbeta_lst, Rc0, num_bands, K):
"""
compute the matrix (M) in the objective function:
min c^H M c
s.t. c0^H c = 1
:param GtG_lst: list of G^H * G
:param Tbeta_lst: list of Teoplitz matrices for beta-s
:param Rc0: right dual matrix for the annihilating filter (same of each block -> not a list)
:return:
"""
mtx = np.zeros((K + 1, K + 1), dtype=float) # <= assume G, Tbeta and Rc0 are real-valued
for loop in range(num_bands):
Tbeta_loop = Tbeta_lst[loop]
GtG_loop = GtG_lst[loop]
mtx += np.dot(Tbeta_loop.T,
linalg.solve(np.dot(Rc0, linalg.solve(GtG_loop, Rc0.T)),
Tbeta_loop)
)
return mtx
示例2: mkk2ab
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def mkk2ab(mk, k):
"""
Transforms MK and M TD matrices into A and B matrices.
Args:
mk (numpy.ndarray): TD MK-matrix;
k (numpy.ndarray): TD K-matrix;
Returns:
A and B submatrices.
"""
if numpy.iscomplexobj(mk) or numpy.iscomplexobj(k):
raise ValueError("MK- and/or K-matrixes are complex-valued: no transform is possible")
m = solve(k.T, mk.T).T
a = 0.5 * (m + k)
b = 0.5 * (m - k)
return a, b
示例3: compute_finite_difference_coefficients
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def compute_finite_difference_coefficients(derivative_order, grid_size):
# from http://www.scientificpython.net/pyblog/uniform-finite-differences-all-orders
n = 2*grid_size -1
A = np.tile(np.arange(grid_size), (n,1)).T
B = np.tile(np.arange(1-grid_size,grid_size), (grid_size,1))
M = (B**A)/gamma(A+1)
r = np.zeros(grid_size)
r[derivative_order] = 1
D = np.zeros((grid_size, grid_size))
for k in range(grid_size):
indexes = k + np.arange(grid_size)
D[:,k] = solve(M[:,indexes], r)
return D
####################################################################################################
示例4: solve
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def solve(self, f, tol=0):
dx = -self.alpha*f
n = len(self.dx)
if n == 0:
return dx
df_f = np.empty(n, dtype=f.dtype)
for k in xrange(n):
df_f[k] = vdot(self.df[k], f)
try:
gamma = solve(self.a, df_f)
except LinAlgError:
# singular; reset the Jacobian approximation
del self.dx[:]
del self.df[:]
return dx
for m in xrange(n):
dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m])
return dx
示例5: log_multivariate_normal_density
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def log_multivariate_normal_density(X, means, covars, min_covar=1.e-7):
"""Log probability for full covariance matrices. """
if hasattr(linalg, 'solve_triangular'):
# only in scipy since 0.9
solve_triangular = linalg.solve_triangular
else:
# slower, but works
solve_triangular = linalg.solve
n_samples, n_dim = X.shape
nmix = len(means)
log_prob = np.empty((n_samples, nmix))
for c, (mu, cv) in enumerate(zip(means, covars)):
try:
cv_chol = linalg.cholesky(cv, lower=True)
except linalg.LinAlgError:
# The model is most probabily stuck in a component with too
# few observations, we need to reinitialize this components
cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
lower=True)
cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T
log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + \
n_dim * np.log(2 * np.pi) + cv_log_det)
return log_prob
示例6: optimize_restpose
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def optimize_restpose(Tr, W, C):
num_bones, num_verts = W.shape
# reshape Tr according to section 4.3 into
# a matrix of d * P of 4-vectors
Tr1 = Tr.reshape((-1, num_bones, 4))
new_verts0 = []
for j in xrange(num_verts):
# multiply with weights and sum over num_bones axis
Lambda = (Tr1 * W[np.newaxis,:,j,np.newaxis]).sum(axis=1)
# convert to system matrix - last column must be one,
# so subtract from rhs
gamma = C[:,j] - Lambda[:,3]
Lambda = Lambda[:,:3]
v = linalg.solve(np.dot(Lambda.T, Lambda),
np.dot(Lambda.T, gamma))
new_verts0.append(v)
return np.array(new_verts0)
示例7: _solve_cholesky
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def _solve_cholesky(X, y, alpha):
# w = inv(X^t X + alpha*Id) * X.T y
n_samples, n_features = X.shape
n_targets = y.shape[1]
A = safe_sparse_dot(X.T, X, dense_output=True)
Xy = safe_sparse_dot(X.T, y, dense_output=True)
one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])
if one_alpha:
A.flat[::n_features + 1] += alpha[0]
return linalg.solve(A, Xy, sym_pos=True,
overwrite_a=True).T
else:
coefs = np.empty([n_targets, n_features], dtype=X.dtype)
for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
A.flat[::n_features + 1] += current_alpha
coef[:] = linalg.solve(A, target, sym_pos=True,
overwrite_a=False).ravel()
A.flat[::n_features + 1] -= current_alpha
return coefs
示例8: matvec
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def matvec(self, f):
dx = -f/self.alpha
n = len(self.dx)
if n == 0:
return dx
df_f = np.empty(n, dtype=f.dtype)
for k in xrange(n):
df_f[k] = vdot(self.df[k], f)
b = np.empty((n, n), dtype=f.dtype)
for i in xrange(n):
for j in xrange(n):
b[i,j] = vdot(self.df[i], self.dx[j])
if i == j and self.w0 != 0:
b[i,j] -= vdot(self.df[i], self.df[i])*self.w0**2*self.alpha
gamma = solve(b, df_f)
for m in xrange(n):
dx += gamma[m]*(self.df[m] + self.dx[m]/self.alpha)
return dx
示例9: test_solve_equivalence
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def test_solve_equivalence():
# For toeplitz matrices, solve_toeplitz() should be equivalent to solve().
random = np.random.RandomState(1234)
for n in (1, 2, 3, 10):
c = random.randn(n)
if random.rand() < 0.5:
c = c + 1j * random.randn(n)
r = random.randn(n)
if random.rand() < 0.5:
r = r + 1j * random.randn(n)
y = random.randn(n)
if random.rand() < 0.5:
y = y + 1j * random.randn(n)
# Check equivalence when both the column and row are provided.
actual = solve_toeplitz((c,r), y)
desired = solve(toeplitz(c, r=r), y)
assert_allclose(actual, desired)
# Check equivalence when the column is provided but not the row.
actual = solve_toeplitz(c, b=y)
desired = solve(toeplitz(c), y)
assert_allclose(actual, desired)
示例10: compute_b
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def compute_b(G_lst, GtG_lst, beta_lst, Rc0, num_bands, a_ri):
"""
compute the uniform sinusoidal samples b from the updated annihilating
filter coeffiients.
:param GtG_lst: list of G^H G for different subbands
:param beta_lst: list of beta-s for different subbands
:param Rc0: right-dual matrix, here it is the convolution matrix associated with c
:param num_bands: number of bands
:param L: size of b: L by 1
:param a_ri: a 2D numpy array. each column corresponds to the measurements within a subband
:return:
"""
b_lst = []
a_Gb_lst = []
for loop in range(num_bands):
GtG_loop = GtG_lst[loop]
beta_loop = beta_lst[loop]
b_loop = beta_loop - \
linalg.solve(GtG_loop,
np.dot(Rc0.T,
linalg.solve(np.dot(Rc0, linalg.solve(GtG_loop, Rc0.T)),
np.dot(Rc0, beta_loop)))
)
b_lst.append(b_loop)
a_Gb_lst.append(a_ri[:, loop] - np.dot(G_lst[loop], b_loop))
return np.column_stack(b_lst), linalg.norm(np.concatenate(a_Gb_lst))
示例11: test_care_g
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def test_care_g(self):
A = array([[-2, -1],[-1, -1]])
Q = array([[0, 0],[0, 1]])
B = array([[1, 0],[0, 4]])
R = array([[2, 0],[0, 1]])
S = array([[0, 0],[0, 0]])
E = array([[2, 1],[1, 2]])
X,L,G = care(A,B,Q,R,S,E)
# print("The solution obtained is", X)
Gref = solve(R, B.T.dot(X).dot(E) + S.T)
assert_array_almost_equal(Gref, G)
assert_array_almost_equal(
A.T.dot(X).dot(E) + E.T.dot(X).dot(A)
- (E.T.dot(X).dot(B) + S).dot(Gref) + Q,
zeros((2,2)))
A = array([[-2, -1],[-1, -1]])
Q = array([[0, 0],[0, 1]])
B = array([[1],[0]])
R = 1
S = array([[1],[0]])
E = array([[2, 1],[1, 2]])
X,L,G = care(A,B,Q,R,S,E)
# print("The solution obtained is", X)
Gref = 1/R * (B.T.dot(X).dot(E) + S.T)
assert_array_almost_equal(
A.T.dot(X).dot(E) + E.T.dot(X).dot(A)
- (E.T.dot(X).dot(B) + S).dot(Gref) + Q ,
zeros((2,2)))
assert_array_almost_equal(Gref , G)
示例12: test_dare
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def test_dare(self):
A = array([[-0.6, 0],[-0.1, -0.4]])
Q = array([[2, 1],[1, 0]])
B = array([[2, 1],[0, 1]])
R = array([[1, 0],[0, 1]])
X,L,G = dare(A,B,Q,R)
# print("The solution obtained is", X)
Gref = solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A))
assert_array_almost_equal(Gref, G)
assert_array_almost_equal(
A.T.dot(X).dot(A) - X -
A.T.dot(X).dot(B).dot(Gref) + Q,
zeros((2,2)))
# check for stable closed loop
lam = eigvals(A - B.dot(G))
assert_array_less(abs(lam), 1.0)
A = array([[1, 0],[-1, 1]])
Q = array([[0, 1],[1, 1]])
B = array([[1],[0]])
R = 2
X,L,G = dare(A,B,Q,R)
# print("The solution obtained is", X)
assert_array_almost_equal(
A.T.dot(X).dot(A) - X -
A.T.dot(X).dot(B) * solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A)) + Q, zeros((2,2)))
assert_array_almost_equal(B.T.dot(X).dot(A) / (B.T.dot(X).dot(B) + R), G)
# check for stable closed loop
lam = eigvals(A - B.dot(G))
assert_array_less(abs(lam), 1.0)
示例13: test_dare_g
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def test_dare_g(self):
A = array([[-0.6, 0],[-0.1, -0.4]])
Q = array([[2, 1],[1, 3]])
B = array([[1, 5],[2, 4]])
R = array([[1, 0],[0, 1]])
S = array([[1, 0],[2, 0]])
E = array([[2, 1],[1, 2]])
X,L,G = dare(A,B,Q,R,S,E)
# print("The solution obtained is", X)
Gref = solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A) + S.T)
assert_array_almost_equal(Gref,G)
assert_array_almost_equal(
A.T.dot(X).dot(A) - E.T.dot(X).dot(E)
- (A.T.dot(X).dot(B) + S).dot(Gref) + Q,
zeros((2,2)) )
# check for stable closed loop
lam = eigvals(A - B.dot(G), E)
assert_array_less(abs(lam), 1.0)
A = array([[-0.6, 0],[-0.1, -0.4]])
Q = array([[2, 1],[1, 3]])
B = array([[1],[2]])
R = 1
S = array([[1],[2]])
E = array([[2, 1],[1, 2]])
X,L,G = dare(A,B,Q,R,S,E)
# print("The solution obtained is", X)
assert_array_almost_equal(
A.T.dot(X).dot(A) - E.T.dot(X).dot(E) -
(A.T.dot(X).dot(B) + S).dot(solve(B.T.dot(X).dot(B) + R, B.T.dot(X).dot(A) + S.T)) + Q,
zeros((2,2)) )
assert_array_almost_equal((B.T.dot(X).dot(A) + S.T) / (B.T.dot(X).dot(B) + R), G)
# check for stable closed loop
lam = eigvals(A - B.dot(G), E)
assert_array_less(abs(lam), 1.0)
示例14: dare
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def dare(A, B, Q, R, S=None, E=None, stabilizing=True):
""" (X,L,G) = dare(A,B,Q,R) solves the discrete-time algebraic Riccati
equation
:math:`A^T X A - X - A^T X B (B^T X B + R)^{-1} B^T X A + Q = 0`
where A and Q are square matrices of the same dimension. Further, Q
is a symmetric matrix. The function returns the solution X, the gain
matrix G = (B^T X B + R)^-1 B^T X A and the closed loop eigenvalues L,
i.e., the eigenvalues of A - B G.
(X,L,G) = dare(A,B,Q,R,S,E) solves the generalized discrete-time algebraic
Riccati equation
:math:`A^T X A - E^T X E - (A^T X B + S) (B^T X B + R)^{-1} (B^T X A + S^T) + Q = 0`
where A, Q and E are square matrices of the same dimension. Further, Q and
R are symmetric matrices. The function returns the solution X, the gain
matrix :math:`G = (B^T X B + R)^{-1} (B^T X A + S^T)` and the closed loop
eigenvalues L, i.e., the eigenvalues of A - B G , E.
"""
if S is not None or E is not None or not stabilizing:
return dare_old(A, B, Q, R, S, E, stabilizing)
else:
Rmat = _ssmatrix(R)
Qmat = _ssmatrix(Q)
X = solve_discrete_are(A, B, Qmat, Rmat)
G = solve(B.T.dot(X).dot(B) + Rmat, B.T.dot(X).dot(A))
L = eigvals(A - B.dot(G))
return _ssmatrix(X), L, _ssmatrix(G)
示例15: get_multivariate_ll
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import solve [as 別名]
def get_multivariate_ll(contexts, gmpe, imt):
"""
Returns the multivariate loglikelihood, as described om equation 7 of
Mak et al. (2017)
"""
observations, v_mat, expected_mat, neqs, nrecs = _build_matrices(
contexts, gmpe, imt)
sign, logdetv = np.linalg.slogdet(v_mat)
b_mat = observations - expected_mat
return (float(nrecs) * np.log(2.0 * np.pi) + logdetv +
(b_mat.T.dot(solve(v_mat, b_mat)))) / 2.