本文整理匯總了Python中scipy.linalg.schur方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.schur方法的具體用法?Python linalg.schur怎麽用?Python linalg.schur使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.schur方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: matrix_sign
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import schur [as 別名]
def matrix_sign(M):
""" The "sign" matrix of `M` """
#Notes: sign(M) defined s.t. eigvecs of sign(M) are evecs of M
# and evals of sign(M) are +/-1 or 0 based on sign of eigenvalues of M
#Using the extremely numerically stable (but expensive) Schur method
# see http://www.maths.manchester.ac.uk/~higham/fm/OT104HighamChapter5.pdf
N = M.shape[0]; assert(M.shape == (N, N)), "M must be square!"
T, Z = _spl.schur(M, 'complex') # M = Z T Z^H where Z is unitary and T is upper-triangular
U = _np.zeros(T.shape, 'complex') # will be sign(T), which is easy to compute
# (U is also upper triangular), and then sign(M) = Z U Z^H
# diagonals are easy
U[_np.diag_indices_from(U)] = _np.sign(_np.diagonal(T))
#Off diagonals: use U^2 = I or TU = UT
# Note: Tij = Uij = 0 when i > j and i==j easy so just consider i<j case
# 0 = sum_k Uik Ukj = (i!=j b/c off-diag)
# FUTURE: speed this up by using np.dot instead of sums below
for j in range(1, N):
for i in range(j - 1, -1, -1):
S = U[i, i] + U[j, j]
if _np.isclose(S, 0): # then use TU = UT
if _np.isclose(T[i, i] - T[j, j], 0): # then just set to zero
U[i, j] = 0.0 # TODO: check correctness of this case
else:
U[i, j] = T[i, j] * (U[i, i] - U[j, j]) / (T[i, i] - T[j, j]) + \
sum([U[i, k] * T[k, j] - T[i, k] * U[k, j] for k in range(i + 1, j)]) \
/ (T[i, i] - T[j, j])
else: # use U^2 = I
U[i, j] = - sum([U[i, k] * U[k, j] for k in range(i + 1, j)]) / S
return _np.dot(Z, _np.dot(U, _np.conjugate(Z.T)))
#Quick & dirty - not always stable:
#U,_,Vt = _np.linalg.svd(M)
#return _np.dot(U,Vt)
示例2: power
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import schur [as 別名]
def power(self, exponent: float):
"""Creates a unitary gate as `gate^exponent`.
Args:
exponent (float): Gate^exponent
Returns:
qiskit.extensions.UnitaryGate: To which `to_matrix` is self.to_matrix^exponent.
Raises:
CircuitError: If Gate is not unitary
"""
from qiskit.quantum_info.operators import Operator # pylint: disable=cyclic-import
from qiskit.extensions.unitary import UnitaryGate # pylint: disable=cyclic-import
# Should be diagonalized because it's a unitary.
decomposition, unitary = schur(Operator(self).data, output='complex')
# Raise the diagonal entries to the specified power
decomposition_power = list()
decomposition_diagonal = decomposition.diagonal()
# assert off-diagonal are 0
if not np.allclose(np.diag(decomposition_diagonal), decomposition):
raise CircuitError('The matrix is not diagonal')
for element in decomposition_diagonal:
decomposition_power.append(pow(element, exponent))
# Then reconstruct the resulting gate.
unitary_power = unitary @ np.diag(decomposition_power) @ unitary.conj().T
return UnitaryGate(unitary_power, label='%s^%s' % (self.name, exponent))
示例3: _choi_to_kraus
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import schur [as 別名]
def _choi_to_kraus(data, input_dim, output_dim, atol=ATOL_DEFAULT):
"""Transform Choi representation to Kraus representation."""
# Check if hermitian matrix
if is_hermitian_matrix(data, atol=atol):
# Get eigen-decomposition of Choi-matrix
# This should be a call to la.eigh, but there is an OpenBlas
# threading issue that is causing segfaults.
# Need schur here since la.eig does not
# guarentee orthogonality in degenerate subspaces
w, v = la.schur(data, output='complex')
w = w.diagonal().real
# Check eigenvalues are non-negative
if len(w[w < -atol]) == 0:
# CP-map Kraus representation
kraus = []
for val, vec in zip(w, v.T):
if abs(val) > atol:
k = np.sqrt(val) * vec.reshape(
(output_dim, input_dim), order='F')
kraus.append(k)
# If we are converting a zero matrix, we need to return a Kraus set
# with a single zero-element Kraus matrix
if not kraus:
kraus.append(np.zeros((output_dim, input_dim), dtype=complex))
return kraus, None
# Non-CP-map generalized Kraus representation
mat_u, svals, mat_vh = la.svd(data)
kraus_l = []
kraus_r = []
for val, vec_l, vec_r in zip(svals, mat_u.T, mat_vh.conj()):
kraus_l.append(
np.sqrt(val) * vec_l.reshape((output_dim, input_dim), order='F'))
kraus_r.append(
np.sqrt(val) * vec_r.reshape((output_dim, input_dim), order='F'))
return kraus_l, kraus_r
示例4: get_cholesky_like_decomposition
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import schur [as 別名]
def get_cholesky_like_decomposition(mat: np.array) -> np.array:
"""Given a PSD matrix A, finds a matrix T such that TT^{dagger}
is an approximation of A
Args:
mat: A nxn matrix, assumed to be positive semidefinite.
Returns:
A matrix T such that TT^{dagger} approximates A
"""
decomposition, unitary = schur(mat, output='complex')
eigenvals = np.array(decomposition.diagonal())
# if a 0 eigenvalue is represented by infinitisimal negative float
eigenvals[eigenvals < 0] = 0
DD = np.diag(np.sqrt(eigenvals))
return unitary @ DD
示例5: schur_ordered
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import schur [as 別名]
def schur_ordered(A, ct=False):
r"""Returns block ordered complex Schur form of matrix :math:`\mathbf{A}`
.. math:: \mathbf{TAT}^H = \mathbf{A}_s = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}
where :math:`A_{11}\in\mathbb{C}^{s\times s}` contains the :math:`s` stable
eigenvalues of :math:`\mathbf{A}\in\mathbb{R}^{m\times m}`.
Args:
A (np.ndarray): Matrix to decompose.
ct (bool): Continuous time system.
Returns:
tuple: Tuple containing the Schur decomposition of :math:`\mathbf{A}`, :math:`\mathbf{A}_s`; the transformation
:math:`\mathbf{T}\in\mathbb{C}^{m\times m}`; and the number of stable eigenvalues of :math:`\mathbf{A}`.
Notes:
This function is a wrapper of ``scipy.linalg.schur`` imposing the settings required for this application.
"""
if ct:
sort_eigvals = 'lhp'
else:
sort_eigvals = 'iuc'
# if A.dtype == complex:
# output_form = 'complex'
# else:
# output_form = 'real'
# issues when not using the complex form of the Schur decomposition
output_form = 'complex'
As, Tt, n_stable1 = sclalg.schur(A, output=output_form, sort=sort_eigvals)
if sort_eigvals == 'lhp':
n_stable = np.sum(np.linalg.eigvals(A).real <= 0)
elif sort_eigvals == 'iuc':
n_stable = np.sum(np.abs(np.linalg.eigvals(A)) <= 1.)
else:
raise NameError('Unknown sorting of eigenvalues. Either iuc or lhp')
assert n_stable == n_stable1, 'Number of stable eigenvalues not equal in Schur output and manual calculation'
assert (np.abs(As-np.conj(Tt.T).dot(A.dot(Tt))) < 1e-4).all(), 'Schur breakdown - A_schur != T^H A T'
return As, Tt.T, n_stable