當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.qr方法代碼示例

本文整理匯總了Python中scipy.linalg.qr方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.qr方法的具體用法?Python linalg.qr怎麽用?Python linalg.qr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.qr方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def __init__(self,in_channel):
        super(InvConv,self).__init__()

        weight=np.random.randn(in_channel,in_channel)
        q,_=linalg.qr(weight)
        w_p,w_l,w_u=linalg.lu(q.astype(np.float32))
        w_s=np.diag(w_u)
        w_u=np.triu(w_u,1)
        u_mask=np.triu(np.ones_like(w_u),1)
        l_mask=u_mask.T

        self.register_buffer('w_p',torch.from_numpy(w_p))
        self.register_buffer('u_mask',torch.from_numpy(u_mask))
        self.register_buffer('l_mask',torch.from_numpy(l_mask))
        self.register_buffer('l_eye',torch.eye(l_mask.shape[0]))
        self.register_buffer('s_sign',torch.sign(torch.from_numpy(w_s)))
        self.w_l=torch.nn.Parameter(torch.from_numpy(w_l))
        self.w_s=torch.nn.Parameter(torch.log(1e-7+torch.abs(torch.from_numpy(w_s))))
        self.w_u=torch.nn.Parameter(torch.from_numpy(w_u))

        self.weight=None
        self.invweight=None

        return 
開發者ID:joansj,項目名稱:blow,代碼行數:26,代碼來源:blow.py

示例2: _absorb_constraints

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def _absorb_constraints(design_matrix, constraints):
    """Absorb model parameters constraints into the design matrix.

    :param design_matrix: The (2-d array) initial design matrix.
    :param constraints: The 2-d array defining initial model parameters
     (``betas``) constraints (``np.dot(constraints, betas) = 0``).
    :return: The new design matrix with absorbed parameters constraints.

    :raise ImportError: if scipy is not found, used for ``scipy.linalg.qr()``
      which is cleaner than numpy's version requiring a call like
      ``qr(..., mode='complete')`` to get a full QR decomposition.
    """
    try:
        from scipy import linalg
    except ImportError: # pragma: no cover
        raise ImportError("Cubic spline functionality requires scipy.")

    m = constraints.shape[0]
    q, r = linalg.qr(np.transpose(constraints))

    return np.dot(design_matrix, q[:, m:]) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:23,代碼來源:mgcv_cubic_splines.py

示例3: haar_measure

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def haar_measure(n):
    """A Random matrix distributed with the Haar measure.

    For more details, see :cite:`mezzadri2006`.

    Args:
        n (int): matrix size
    Returns:
        array: an nxn random matrix
    """
    z = (sp.randn(n, n) + 1j * sp.randn(n, n)) / np.sqrt(2.0)
    q, r = qr(z)
    d = sp.diagonal(r)
    ph = d / np.abs(d)
    q = np.multiply(q, ph, q)
    return q 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:18,代碼來源:shared_ops.py

示例4: qft_circuit

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def qft_circuit(num_qubits, measure=True):
    """Create a qft circuit.

    Args:
        num_qubits (int): number of qubits
        measure (bool): include measurement in circuit.

    Returns:
        QftCircuit: A qft circuit.
    """
    # Create quantum/classical registers of size n
    qr = QuantumRegister(num_qubits)
    circuit = QuantumCircuit(qr)

    for i in range(num_qubits):
        for j in range(i):
            circuit.cu1(math.pi/float(2**(i-j)), qr[i], qr[j])
        circuit.h(qr[i])

    if measure is True:
        circuit = _add_measurements(circuit, qr)
    return circuit 
開發者ID:Qiskit,項目名稱:qiskit-aer,代碼行數:24,代碼來源:tools.py

示例5: simple_u3_circuit

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def simple_u3_circuit(num_qubits, measure=True):
    """Creates a simple circuit composed by u3 gates, with measurements or not
    at the end of each qubit.

    Args:
        num_qubits (int): Number of qubits
        measure (bool): Add measurements at the end of each qubit

    Returns:
        QuantumCircuit: The simple quantum circuit
    """
    qr = QuantumRegister(num_qubits)
    circuit = QuantumCircuit(qr)
    for i in range(num_qubits):
        circuit.u3(1.1, 2.2, 3.3, qr[i])

    if measure:
        circuit = _add_measurements(circuit, qr)
    return circuit 
開發者ID:Qiskit,項目名稱:qiskit-aer,代碼行數:21,代碼來源:tools.py

示例6: simple_cnot_circuit

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def simple_cnot_circuit(num_qubits, measure=True):
    """Creates a simple circuit composed by cnot gates, with measurements or
    not at the end of each qubit.

    Args:
        num_qubits (int): Number of qubits
        measure (bool): Add measurements at the end of each qubit

    Returns:
        QuantumCircuit: The simple quantum circuit
    """
    qr = QuantumRegister(num_qubits)
    circuit = QuantumCircuit(qr)
    for i in range(num_qubits):
        # for the last qubit, we exchange control and target qubits
        target_qubit = i + 1 if num_qubits - 1 > i else i - 1
        circuit.cx(qr[i], qr[target_qubit])

    if measure:
        circuit = _add_measurements(circuit, qr)
    return circuit


# pylint: disable=invalid-name 
開發者ID:Qiskit,項目名稱:qiskit-aer,代碼行數:26,代碼來源:tools.py

示例7: starting_point

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def starting_point(self, random=False):
        """Heuristic to find a starting point candidate

        Parameters
        ----------
        random : `bool`
            Use a random orthogonal matrix instead of identity

        Returns
        -------
        startint_point : `np.ndarray`, shape=(n_nodes, n_nodes)
            A starting point candidate
        """
        sqrt_C = sqrtm(self.covariance)
        sqrt_L = np.sqrt(self.mean_intensity)
        if random:
            random_matrix = np.random.rand(self.n_nodes, self.n_nodes)
            M, _ = qr(random_matrix)
        else:
            M = np.eye(self.n_nodes)
        initial = np.dot(np.dot(sqrt_C, M), np.diag(1. / sqrt_L))
        return initial 
開發者ID:X-DataInitiative,項目名稱:tick,代碼行數:24,代碼來源:hawkes_cumulant_matching.py

示例8: test_delete_1x1_row_col

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def test_delete_1x1_row_col(self):
        a, q, r = self.generate('1x1')
        q1, r1 = qr_delete(q, r, 0, 1, 'row')
        assert_equal(q1, np.ndarray(shape=(0, 0), dtype=q.dtype))
        assert_equal(r1, np.ndarray(shape=(0, r.shape[1]), dtype=r.dtype))

        a, q, r = self.generate('1x1')
        q1, r1 = qr_delete(q, r, 0, 1, 'col')
        assert_unitary(q1)
        assert_(q1.dtype == q.dtype)
        assert_(q1.shape == q.shape)
        assert_equal(r1, np.ndarray(shape=(r.shape[0], 0), dtype=r.dtype))

    # all full qr, row deletes and single column deletes should be able to
    # handle any non negative strides. (only row and column vector
    # operations are used.) p column delete require fortran ordered
    # Q and R and will make a copy as necessary.  Economic qr row deletes 
    # requre a contigous q. 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:20,代碼來源:test_decomp_update.py

示例9: null_space_method

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def null_space_method(Ao, bo, Co, do, verbose):
    A = deepcopy(Ao)
    C = deepcopy(Co)
    b = deepcopy(bo)
    d = deepcopy(do)
    m, n = A.shape
    p, n = C.shape
    Q, R = np.linalg.qr(C.T, 'complete')
    Q1 = Q[0:n, 0:p]
    Q2 = Q[0:n, p:n]
    # Lower triangular matrix!
    L = R.T
    L = L[0:p, 0:p]
    y1 = least_squares(L, d, verbose)
    c = b - np.dot( np.dot(A , Q1) , y1)
    AQ2 = np.dot(A , Q2)
    y2 = least_squares(AQ2 , c, verbose)
    x = np.dot(Q1 , y1) + np.dot(Q2 , y2)
    cond = np.linalg.cond(AQ2)
    if verbose is True:
        print('The condition number of the matrix is '+str(cond)+'.')
    return x 
開發者ID:Effective-Quadratures,項目名稱:Effective-Quadratures,代碼行數:24,代碼來源:solver.py

示例10: predict

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def predict(self, u=0):
        """
        Predict next state (prior) using the Kalman filter state propagation
        equations.

        Parameters
        ----------

        u : np.array, optional
            Optional control vector. If non-zero, it is multiplied by B
            to create the control input into the system.
        """

        # x = Fx + Bu
        self.x = dot(self.F, self.x) + dot(self.B, u)

        # P = FPF' + Q
        _, P2 = qr(np.hstack([dot(self.F, self._P1_2), self._Q1_2]).T)
        self._P1_2 = P2[:self.dim_x, :self.dim_x].T

        # copy prior
        self.x_prior = np.copy(self.x)
        self._P1_2_prior = np.copy(self._P1_2) 
開發者ID:rlabbe,項目名稱:filterpy,代碼行數:25,代碼來源:square_root.py

示例11: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def __init__(self, in_channel):
        super().__init__()

        weight = np.random.randn(in_channel, in_channel)
        q, _ = la.qr(weight)
        w_p, w_l, w_u = la.lu(q.astype(np.float32))
        w_s = np.diag(w_u)
        w_u = np.triu(w_u, 1)
        u_mask = np.triu(np.ones_like(w_u), 1)
        l_mask = u_mask.T

        w_p = torch.from_numpy(w_p)
        w_l = torch.from_numpy(w_l)
        w_s = torch.from_numpy(w_s)
        w_u = torch.from_numpy(w_u)

        self.register_buffer('w_p', w_p)
        self.register_buffer('u_mask', torch.from_numpy(u_mask))
        self.register_buffer('l_mask', torch.from_numpy(l_mask))
        self.register_buffer('s_sign', torch.sign(w_s))
        self.register_buffer('l_eye', torch.eye(l_mask.shape[0]))
        self.w_l = nn.Parameter(w_l)
        self.w_s = nn.Parameter(logabs(w_s))
        self.w_u = nn.Parameter(w_u) 
開發者ID:rosinality,項目名稱:glow-pytorch,代碼行數:26,代碼來源:model.py

示例12: nullspace_qr

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def nullspace_qr(m, tol=1e-7):
    """
    Compute the nullspace of a matrix using the QR decomposition.

    The QR decomposition is faster but less accurate than the SVD
    used by :func:`nullspace`.

    Parameters
    ----------
    m : numpy array
       An matrix of shape (M,N) whose nullspace to compute.

    tol : float (optional)
       Nullspace tolerance, used when comparing diagonal values of R with zero.

    Returns
    -------
    An matrix of shape (M,K) whose columns contain nullspace basis vectors.
    """
    #if M,N = m.shape, and q,r,p = _spl.qr(...)
    # q.shape == (N,N), r.shape = (N,M), p.shape = (M,)
    q, r, _ = _spl.qr(m.T, mode='full', pivoting=True)
    rank = (_np.abs(_np.diagonal(r)) > tol).sum()

    #DEBUG: requires q,r,p = _sql.qr(...) above
    #assert( _np.linalg.norm(_np.dot(q,r) - m.T[:,p]) < 1e-8) #check QR decomp
    #print("Rank QR = ",rank)
    #print('\n'.join(map(str,_np.abs(_np.diagonal(r)))))
    #print("Ret = ", q[:,rank:].shape, " Q = ",q.shape, " R = ",r.shape)

    return q[:, rank:] 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:33,代碼來源:matrixtools.py

示例13: _weightsamples

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def _weightsamples(self):
        reps = int(np.ceil(self.n / self.d))
        Q = np.empty((self.d, self.d*reps))

        for r in range(reps):
            W = self._random.randn(self.d, self.d)
            Q[:, (r * self.d):((r + 1) * self.d)] = qr(W)[0]

        S = np.sqrt(self._random.chisquare(df=self.d, size=self.d))
        weights = np.diag(S).dot(Q[:, :self.n])
        return weights 
開發者ID:NICTA,項目名稱:revrand,代碼行數:13,代碼來源:basis_functions.py

示例14: test_crs_with_specific_constraint

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def test_crs_with_specific_constraint():
    from patsy.highlevel import incr_dbuilder, build_design_matrices, dmatrix
    x = (-1.5)**np.arange(20)
    # Hard coded R values for smooth: s(x, bs="cr", k=5)
    # R> knots <- smooth$xp
    knots_R = np.array([-2216.837820053100585937,
                        -50.456909179687500000,
                        -0.250000000000000000,
                        33.637939453125000000,
                        1477.891880035400390625])
    # R> centering.constraint <- t(qr.X(attr(smooth, "qrc")))
    centering_constraint_R = np.array([[0.064910676323168478574,
                                        1.4519875239407085132,
                                        -2.1947446912471946234,
                                        1.6129783104357671153,
                                        0.064868180547550072235]])
    # values for which we want a prediction
    new_x = np.array([-3000., -200., 300., 2000.])
    result1 = dmatrix("cr(new_x, knots=knots_R[1:-1], "
                      "lower_bound=knots_R[0], upper_bound=knots_R[-1], "
                      "constraints=centering_constraint_R)")

    data_chunked = [{"x": x[:10]}, {"x": x[10:]}]
    new_data = {"x": new_x}
    builder = incr_dbuilder("cr(x, df=4, constraints='center')",
                            lambda: iter(data_chunked))
    result2 = build_design_matrices([builder], new_data)[0]

    assert np.allclose(result1, result2, rtol=1e-12, atol=0.) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:31,代碼來源:mgcv_cubic_splines.py

示例15: qr

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import qr [as 別名]
def qr(A):
    '''Get square upper triangular matrix of QR decomposition of matrix A'''
    N, L = A.shape
    if not N >= L:
        raise ValueError("Number of columns must exceed number of rows")
    Q, R = linalg.qr(A)
    return R[:L, :L] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:9,代碼來源:unscented.py


注:本文中的scipy.linalg.qr方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。