當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.pinvh方法代碼示例

本文整理匯總了Python中scipy.linalg.pinvh方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.pinvh方法的具體用法?Python linalg.pinvh怎麽用?Python linalg.pinvh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.pinvh方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _set_covariance

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def _set_covariance(self, covariance):
        """Saves the covariance and precision estimates

        Storage is done accordingly to `self.store_precision`.
        Precision stored only if invertible.

        Parameters
        ----------
        covariance : 2D ndarray, shape (n_features, n_features)
            Estimated covariance matrix to be stored, and from which precision
            is computed.

        """
        covariance = check_array(covariance)
        # set covariance
        self.covariance_ = covariance
        # set precision
        if self.store_precision:
            self.precision_ = linalg.pinvh(covariance)
        else:
            self.precision_ = None 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:empirical_covariance_.py

示例2: assoc_test

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def assoc_test(weights, gwas, ldmat, heterogeneity=False):
    """
    TWAS association test.

    :param weights: numpy.ndarray of eQTL weights
    :param gwas: pyfocus.GWAS object
    :param ldmat: numpy.ndarray LD matrix
    :param heterogeneity:  bool estimate variance from multiplicative random effect

    :return: tuple (beta, se)
    """

    p = ldmat.shape[0]
    assoc = np.dot(weights, gwas.Z)
    if heterogeneity:
        resid = assoc - gwas.Z
        resid_var = mdot([resid, lin.pinvh(ldmat), resid]) / p
    else:
        resid_var = 1

    se = np.sqrt(resid_var * mdot([weights, ldmat, weights]))

    return assoc, se 
開發者ID:bogdanlab,項目名稱:focus,代碼行數:25,代碼來源:finemap.py

示例3: pinvh

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def pinvh(a, cond=None, rcond=None, lower=True):
    return linalg.pinvh(a, cond, rcond, lower) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:4,代碼來源:extmath.py

示例4: get_precision

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def get_precision(self):
        """Getter for the precision matrix.

        Returns
        -------
        precision_ : array-like
            The precision matrix associated to the current covariance object.

        """
        if self.store_precision:
            precision = self.precision_
        else:
            precision = linalg.pinvh(self.covariance_)
        return precision 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:empirical_covariance_.py

示例5: get_resid

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def get_resid(zscores, swld, wcor):
    """
    Regress out the average pleiotropic signal tagged by TWAS at the region

    :param zscores: numpy.ndarray TWAS zscores
    :param swld: numpy.ndarray intercept variable
    :param wcor: numpy.ndarray predicted expression correlation

    :return: tuple (residual TWAS zscores, intercept z-score)
    """
    m, m = wcor.shape
    m, p = swld.shape

    # create mean factor
    intercept = swld.dot(np.ones(p))

    # estimate under the null for variance components, i.e. V = SW LD SW
    wcor_inv, rank = lin.pinvh(wcor, return_rank=True)

    numer = mdot([intercept.T, wcor_inv, zscores])
    denom = mdot([intercept.T, wcor_inv, intercept])
    alpha = numer / denom
    resid = zscores - intercept * alpha

    s2 = mdot([resid, wcor_inv, resid]) / (rank - 1)
    inter_se = np.sqrt(s2 / denom)
    inter_z = alpha / inter_se

    return resid, inter_z 
開發者ID:bogdanlab,項目名稱:focus,代碼行數:31,代碼來源:finemap.py

示例6: get_precision

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def get_precision(self):
        """Getter for the precision matrix.

        Returns
        -------
        precision_ : array-like,
            The precision matrix associated to the current covariance object.

        """
        if self.store_precision:
            precision = self.precision_
        else:
            precision = linalg.pinvh(self.covariance_)
        return precision 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:16,代碼來源:empirical_covariance_.py

示例7: _get_covars

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def _get_covars(self):
        return [pinvh(c) for c in self._get_precisions()] 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:4,代碼來源:dpgmm.py

示例8: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def __init__(self, ctr, cov):
        self.n = len(ctr)  # dimension
        self.ctr = np.array(ctr)  # center coordinates
        self.cov = np.array(cov)  # covariance matrix
        self.am = lalg.pinvh(cov)  # precision matrix (inverse of covariance)
        self.axes = lalg.cholesky(cov, lower=True)  # transformation axes

        # Volume of ellipsoid is the volume of an n-sphere divided
        # by the (determinant of the) Jacobian associated with the
        # transformation, which by definition is the precision matrix.
        detsign, detln = linalg.slogdet(self.am)
        self.vol = np.exp(logvol_prefactor(self.n) - 0.5 * detln)

        # The eigenvalues (l) of `a` are (a^-2, b^-2, ...) where
        # (a, b, ...) are the lengths of principle axes.
        # The eigenvectors (v) are the normalized principle axes.
        l, v = lalg.eigh(self.cov)
        if np.all((l > 0.) & (np.isfinite(l))):
            self.axlens = np.sqrt(l)
        else:
            raise ValueError("The input precision matrix defining the "
                             "ellipsoid {0} is apparently singular with "
                             "l={1} and v={2}.".format(self.cov, l, v))

        # Scaled eigenvectors are the principle axes, where `paxes[:,i]` is the
        # i-th axis. Multiplying this matrix by a vector will transform a
        # point in the unit n-sphere to a point in the ellipsoid.
        self.paxes = np.dot(v, np.diag(self.axlens))

        # Amount by which volume was increased after initialization (i.e.
        # cumulative factor from `scale_to_vol`).
        self.expand = 1. 
開發者ID:joshspeagle,項目名稱:dynesty,代碼行數:34,代碼來源:bounding.py

示例9: fit

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def fit(self, X, y=None):
        """Fits a Minimum Covariance Determinant with the FastMCD algorithm.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y
            not used, present for API consistence purpose.

        Returns
        -------
        self : object

        """
        X = check_array(X, ensure_min_samples=2, estimator='MinCovDet')
        random_state = check_random_state(self.random_state)
        n_samples, n_features = X.shape
        # check that the empirical covariance is full rank
        if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
            warnings.warn("The covariance matrix associated to your dataset "
                          "is not full rank")
        # compute and store raw estimates
        raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
            X, support_fraction=self.support_fraction,
            cov_computation_method=self._nonrobust_covariance,
            random_state=random_state)
        if self.assume_centered:
            raw_location = np.zeros(n_features)
            raw_covariance = self._nonrobust_covariance(X[raw_support],
                                                        assume_centered=True)
            # get precision matrix in an optimized way
            precision = linalg.pinvh(raw_covariance)
            raw_dist = np.sum(np.dot(X, precision) * X, 1)
        self.raw_location_ = raw_location
        self.raw_covariance_ = raw_covariance
        self.raw_support_ = raw_support
        self.location_ = raw_location
        self.support_ = raw_support
        self.dist_ = raw_dist
        # obtain consistency at normal models
        self.correct_covariance(X)
        # re-weight estimator
        self.reweight_covariance(X)

        return self 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:50,代碼來源:robust_covariance.py

示例10: test_bayesian_ridge_score_values

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def test_bayesian_ridge_score_values():
    """Check value of score on toy example.

    Compute log marginal likelihood with equation (36) in Sparse Bayesian
    Learning and the Relevance Vector Machine (Tipping, 2001):

    - 0.5 * (log |Id/alpha + X.X^T/lambda| +
             y^T.(Id/alpha + X.X^T/lambda).y + n * log(2 * pi))
    + lambda_1 * log(lambda) - lambda_2 * lambda
    + alpha_1 * log(alpha) - alpha_2 * alpha

    and check equality with the score computed during training.
    """

    X, y = diabetes.data, diabetes.target
    n_samples = X.shape[0]
    # check with initial values of alpha and lambda (see code for the values)
    eps = np.finfo(np.float64).eps
    alpha_ = 1. / (np.var(y) + eps)
    lambda_ = 1.

    # value of the parameters of the Gamma hyperpriors
    alpha_1 = 0.1
    alpha_2 = 0.1
    lambda_1 = 0.1
    lambda_2 = 0.1

    # compute score using formula of docstring
    score = lambda_1 * log(lambda_) - lambda_2 * lambda_
    score += alpha_1 * log(alpha_) - alpha_2 * alpha_
    M = 1. / alpha_ * np.eye(n_samples) + 1. / lambda_ * np.dot(X, X.T)
    M_inv = pinvh(M)
    score += - 0.5 * (fast_logdet(M) + np.dot(y.T, np.dot(M_inv, y)) +
                      n_samples * log(2 * np.pi))

    # compute score with BayesianRidge
    clf = BayesianRidge(alpha_1=alpha_1, alpha_2=alpha_2,
                        lambda_1=lambda_1, lambda_2=lambda_2,
                        n_iter=1, fit_intercept=False, compute_score=True)
    clf.fit(X, y)

    assert_almost_equal(clf.scores_[0], score, decimal=9) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:44,代碼來源:test_bayes.py

示例11: _train_gblup

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def _train_gblup(y, Z, X, include_ses=False, p_threshold=0.01):
    log = logging.getLogger(pyfocus.LOG)

    try:
        from limix.qc import normalise_covariance
    except ImportError as ie:
        log.error("Training submodule requires limix>=2.0.0 and sklearn to be installed.")
        raise
    from numpy.linalg import multi_dot as mdot
    from scipy.linalg import pinvh

    log.debug("Initializing GBLUP model")

    attrs = dict()

    # estimate heritability using limix
    K_cis = np.dot(Z, Z.T)
    K_cis = normalise_covariance(K_cis)
    fe_var, s2u, s2e, logl, fixed_betas, pval = _fit_cis_herit(y, K_cis, X)
    yresid = y - np.dot(X, fixed_betas)

    if pval > p_threshold:
        log.info("h2g pvalue {} greater than threshold {}. Skipping".format(pval, p_threshold))
        return None

    attrs["h2g"] = s2u / (fe_var + s2u + s2e)
    attrs["h2g.logl"] = logl
    attrs["h2g.pvalue"] = pval

    # Total variance
    n, p = Z.shape

    # ridge solution (i.e. rrBLUP)
    # this will be slower than normal GBLUP when p > n but is a little bit more flexible
    ZtZpDinv = pinvh(np.dot(Z.T, Z) + np.eye(p) * (s2e / s2u))
    betas = mdot([ZtZpDinv, Z.T, yresid])

    if include_ses:
        # TODO: come back to this with matrix operations rather than list comprehensions
        # jack-knife standard-errors over the fast leave-one-out estimates using rrBLUP
        """
        h = np.array([mdot([Z[i], ZtZpDinv, Z[i]]) for i in range(n)])
        e = yresid - np.dot(Z, betas)
        beta_jk = [betas - np.dot(ZtZpDinv, Z[i] * e[i]) / (1 - h[i]) for i in range(n)]
        ses = np.sqrt(np.mean(beta_jk, axis=0) * (n - 1))
        """
        ses = None
    else:
        ses = None

    return betas, ses, attrs 
開發者ID:bogdanlab,項目名稱:focus,代碼行數:53,代碼來源:train.py

示例12: fit

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import pinvh [as 別名]
def fit(self, X, y=None):
        """Fits a Minimum Covariance Determinant with the FastMCD algorithm.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : not used, present for API consistence purpose.

        Returns
        -------
        self : object
            Returns self.

        """
        X = check_array(X, ensure_min_samples=2, estimator='MinCovDet')
        random_state = check_random_state(self.random_state)
        n_samples, n_features = X.shape
        # check that the empirical covariance is full rank
        if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
            warnings.warn("The covariance matrix associated to your dataset "
                          "is not full rank")
        # compute and store raw estimates
        raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
            X, support_fraction=self.support_fraction,
            cov_computation_method=self._nonrobust_covariance,
            random_state=random_state)
        if self.assume_centered:
            raw_location = np.zeros(n_features)
            raw_covariance = self._nonrobust_covariance(X[raw_support],
                                                        assume_centered=True)
            # get precision matrix in an optimized way
            precision = linalg.pinvh(raw_covariance)
            raw_dist = np.sum(np.dot(X, precision) * X, 1)
        self.raw_location_ = raw_location
        self.raw_covariance_ = raw_covariance
        self.raw_support_ = raw_support
        self.location_ = raw_location
        self.support_ = raw_support
        self.dist_ = raw_dist
        # obtain consistency at normal models
        self.correct_covariance(X)
        # re-weight estimator
        self.reweight_covariance(X)

        return self 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:50,代碼來源:robust_covariance.py


注:本文中的scipy.linalg.pinvh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。