當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.orth方法代碼示例

本文整理匯總了Python中scipy.linalg.orth方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.orth方法的具體用法?Python linalg.orth怎麽用?Python linalg.orth使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.orth方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: random_walk

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def random_walk(G,initial_prob,subspace_dim=3,walk_steps=3):
    """
    Start a random walk with probability distribution p_initial. 
    Transition matrix needs to be calculated according to adjacent matrix G.
    
    """
    assert type(initial_prob) == np.ndarray, "Initial probability distribution is \
                                             not a numpy array"
       
    # Transform the adjacent matrix to a laplacian matrix P
    P = adj_to_Laplacian(G)
    
    Prob_Matrix = np.zeros((G.shape[0], subspace_dim))
    Prob_Matrix[:,0] = initial_prob
    for i in range(1,subspace_dim):
        Prob_Matrix[:,i] = np.dot(Prob_Matrix[:,i-1], P)
     
    Orth_Prob_Matrix = splin.orth(Prob_Matrix)
    
    for i in range(walk_steps):
        temp = np.dot(Orth_Prob_Matrix.T, P)
        Orth_Prob_Matrix = splin.orth(temp.T)
    
    return Orth_Prob_Matrix 
開發者ID:YixuanLi,項目名稱:LEMON,代碼行數:26,代碼來源:LEMON.py

示例2: compare_solutions

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def compare_solutions(A,B,m):
    n = A.shape[0]

    numpy.random.seed(0)

    V = rand(n,m)
    X = linalg.orth(V)

    eigs,vecs = lobpcg(A, X, B=B, tol=1e-5, maxiter=30)
    eigs.sort()

    #w,v = symeig(A,B)
    w,v = eig(A,b=B)
    w.sort()

    assert_almost_equal(w[:int(m/2)],eigs[:int(m/2)],decimal=2)

    #from pylab import plot, show, legend, xlabel, ylabel
    #plot(arange(0,len(w[:m])),w[:m],'bx',label='Results by symeig')
    #plot(arange(0,len(eigs)),eigs,'r+',label='Results by lobpcg')
    #legend()
    #xlabel(r'Eigenvalue $i$')
    #ylabel(r'$\lambda_i$')
    #show() 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:26,代碼來源:test_lobpcg.py

示例3: find_shared_subspace

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def find_shared_subspace(mat1, mat2, sin_thres=0.05, cos_thres=1 / math.sqrt(2), mat2_vec=False,
                         assume_orthonomal=False, get_angle=True):
    if mat2_vec:
        mat2 = mat2[:, None]
    if not assume_orthonomal:
        mat1 = orth(mat1)
        mat2 = orth(mat2)
    cross_prod = np.dot(mat1.T, mat2)
    singular = np.linalg.svd(cross_prod)
    shared = sum(singular[1] > sin_thres)
    if not get_angle:
        return None, shared
    costheta = min(singular[1])
    if costheta < cos_thres:
        theta = math.acos(min(1, costheta))
    else:
        if mat1.shape[1] < mat2.shape[1]:
            sintheta = np.linalg.norm(x=mat1 - np.dot(mat2, cross_prod.T), ord=2)
        else:
            sintheta = np.linalg.norm(x=mat2.T - np.dot(mat1, cross_prod), ord=2)
        theta = math.asin(min(1, sintheta))
    return 180 * theta / math.pi, shared 
開發者ID:chriscainx,項目名稱:mnnpy,代碼行數:24,代碼來源:utils.py

示例4: __random_walk

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def __random_walk(G, initial_prob, subspace_dim=3, walk_steps=3):
    """
    Start a random walk with probability distribution p_initial.
    Transition matrix needs to be calculated according to adjacent matrix G.

    """
    assert type(initial_prob) == np.ndarray, "Initial probability distribution is \
                                             not a numpy array"

    # Transform the adjacent matrix to a laplacian matrix P
    P = __adj_to_Laplacian(G)

    Prob_Matrix = np.zeros((G.shape[0], subspace_dim))
    Prob_Matrix[:, 0] = initial_prob
    for i in range(1, subspace_dim):
        Prob_Matrix[:, i] = np.dot(Prob_Matrix[:, i - 1], P)

    Orth_Prob_Matrix = splin.orth(Prob_Matrix)

    for i in range(walk_steps):
        temp = np.dot(Orth_Prob_Matrix.T, P)
        Orth_Prob_Matrix = splin.orth(temp.T)

    return Orth_Prob_Matrix 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:26,代碼來源:LEMON.py

示例5: test_fit_elbows

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def test_fit_elbows():
    n=10; elbows=3
    np.random.seed(1)
    x = np.random.binomial(1, 0.6, (n ** 2)).reshape(n, n)
    xorth = orth(x)
    d = np.zeros(xorth.shape[0])
    for i in range(0, len(d), int(len(d) / (elbows + 1))):
        d[:i] += 10
    X = xorth.T.dot(np.diag(d)).dot(xorth)

    Xs = [X, X]

    ajive = AJIVE(n_elbows=2)
    ajive = ajive.fit(Xs)

    np.testing.assert_equal(list(ajive.init_signal_ranks_.values())[0], 4) 
開發者ID:neurodata,項目名稱:mvlearn,代碼行數:18,代碼來源:test_AJIVE.py

示例6: compare_solutions

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def compare_solutions(A,B,m):
    n = A.shape[0]

    np.random.seed(0)

    V = rand(n,m)
    X = linalg.orth(V)

    eigs,vecs = lobpcg(A, X, B=B, tol=1e-5, maxiter=30)
    eigs.sort()

    w,v = eig(A,b=B)
    w.sort()

    assert_almost_equal(w[:int(m/2)],eigs[:int(m/2)],decimal=2) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:17,代碼來源:test_lobpcg.py

示例7: generate_data

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def generate_data(n=10, elbows=3, seed=1):
    """
    Generate data matrix with a specific number of elbows on scree plot
    """
    np.random.seed(seed)
    x = np.random.binomial(1, 0.6, (n ** 2)).reshape(n, n)
    xorth = orth(x)
    d = np.zeros(xorth.shape[0])
    for i in range(0, len(d), int(len(d) / (elbows + 1))):
        d[:i] += 10
    A = xorth.T.dot(np.diag(d)).dot(xorth)
    return A, d 
開發者ID:neurodata,項目名稱:graspy,代碼行數:14,代碼來源:test_select_dimension.py

示例8: gen_union_of_subspaces

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import orth [as 別名]
def gen_union_of_subspaces(ambient_dim, subspace_dim, num_subspaces, num_points_per_subspace, noise_level=0.0):
    """This funtion generates a union of subspaces under random model, i.e., 
    subspaces are independently and uniformly distributed in the ambient space,
    data points are independently and uniformly distributed on the unit sphere of each subspace

    Parameters
    -----------
    ambient_dim : int
        Dimention of the ambient space
    subspace_dim : int
        Dimension of each subspace (all subspaces have the same dimension)
    num_subspaces : int
        Number of subspaces to be generated
    num_points_per_subspace : int
        Number of data points from each of the subspaces
    noise_level : float
        Amount of Gaussian noise on data
		
    Returns
    -------
    data : shape (num_subspaces * num_points_per_subspace) by ambient_dim
        Data matrix containing points drawn from a union of subspaces as its rows
    label : shape (num_subspaces * num_points_per_subspace)
        Membership of each data point to the subspace it lies in
    """

    data = np.empty((num_points_per_subspace* num_subspaces, ambient_dim))
    label = np.empty(num_points_per_subspace * num_subspaces, dtype=int)
  
    for i in range(num_subspaces):
        basis = np.random.normal(size=(ambient_dim, subspace_dim))
        basis = orth(basis)
        coeff = np.random.normal(size=(subspace_dim, num_points_per_subspace))
        coeff = normalize(coeff, norm='l2', axis=0, copy=False)
        data_per_subspace = np.matmul(basis, coeff).T

        base_index = i*num_points_per_subspace
        data[(0+base_index):(num_points_per_subspace+base_index), :] = data_per_subspace
        label[0+base_index:num_points_per_subspace+base_index,] = i

    data += np.random.normal(size=(num_points_per_subspace * num_subspaces, ambient_dim)) * noise_level
  
    return data, label 
開發者ID:ChongYou,項目名稱:subspace-clustering,代碼行數:45,代碼來源:gen_union_of_subspaces.py


注:本文中的scipy.linalg.orth方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。