當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.norm方法代碼示例

本文整理匯總了Python中scipy.linalg.norm方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.norm方法的具體用法?Python linalg.norm怎麽用?Python linalg.norm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.linalg的用法示例。


在下文中一共展示了linalg.norm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: doa

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def doa(self, receiver, source):
        ''' Computes the direction of arrival wrt a source and receiver '''

        s_ind = self.key2ind(source)
        r_ind = self.key2ind(receiver)

        # vector from receiver to source
        v = self.X[:,s_ind] - self.X[:,r_ind]

        azimuth = np.arctan2(v[1], v[0])
        elevation = np.arctan2(v[2], la.norm(v[:2]))

        azimuth = azimuth + 2*np.pi if azimuth < 0. else azimuth
        elevation = elevation + 2*np.pi if elevation < 0. else elevation

        return np.array([azimuth, elevation]) 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:18,代碼來源:point_cloud.py

示例2: nn

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def nn(model, text, vectors, query, k=5):
	"""
	Return the nearest neighbour sentences to query
	text: list of sentences
	vectors: the corresponding representations for text
	query: a string to search
	"""
	qf = encode(model, [query])
	qf /= norm(qf)
	scores = numpy.dot(qf, vectors.T).flatten()
	sorted_args = numpy.argsort(scores)[::-1]
	sentences = [text[a] for a in sorted_args[:k]]
	print 'QUERY: ' + query
	print 'NEAREST: '
	for i, s in enumerate(sentences):
		print s, sorted_args[i] 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:18,代碼來源:skipthoughts.py

示例3: _orthogonalize

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def _orthogonalize(X):
    """Orthogonalize every column of design `X` w.r.t preceding columns

    Parameters
    ----------
    X : array of shape(n, p)
       the data to be orthogonalized

    Returns
    -------
    X : array of shape(n, p)
       the data after orthogonalization

    Notes
    -----
    X is changed in place. The columns are not normalized.
    """
    if X.size == X.shape[0]:
        return X
    from scipy.linalg import pinv, norm
    for i in range(1, X.shape[1]):
        X[:, i] -= np.dot(np.dot(X[:, i], X[:, :i]), pinv(X[:, :i]))
        # X[:, i] /= norm(X[:, i])
    return X 
開發者ID:bids-standard,項目名稱:pybids,代碼行數:26,代碼來源:hrf.py

示例4: nn

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def nn(model, text, vectors, query, k=5):
	"""
	Return the nearest neighbour sentences to query
	text: list of sentences
	vectors: the corresponding representations for text
	query: a string to search
	"""
	qf = encode(model, [query])
	qf /= norm(qf)
	scores = numpy.dot(qf, vectors.T).flatten()
	sorted_args = numpy.argsort(scores)[::-1]
	sentences = [text[a] for a in sorted_args[:k]]
	print(('QUERY: ' + query))
	print('NEAREST: ')
	for i, s in enumerate(sentences):
		print((s, sorted_args[i])) 
開發者ID:paarthneekhara,項目名稱:text-to-image,代碼行數:18,代碼來源:skipthoughts.py

示例5: norm_of_columns

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def norm_of_columns(A, p=2):
    """Vector p-norm of each column of a matrix.

    Parameters
    ----------
    A : array_like
        Input matrix.
    p : int, optional
        p-th norm.

    Returns
    -------
    array_like
        p-norm of each column of A.
    """
    _, N = A.shape
    return np.asarray([linalg.norm(A[:, j], ord=p) for j in range(N)]) 
開發者ID:spatialaudio,項目名稱:sfa-numpy,代碼行數:19,代碼來源:util.py

示例6: coherence_of_columns

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def coherence_of_columns(A):
    """Mutual coherence of columns of A.

    Parameters
    ----------
    A : array_like
        Input matrix.
    p : int, optional
        p-th norm.

    Returns
    -------
    array_like
        Mutual coherence of columns of A.
    """
    A = np.asmatrix(A)
    _, N = A.shape
    A = A * np.asmatrix(np.diag(1/norm_of_columns(A)))
    Gram_A = A.H*A
    for j in range(N):
        Gram_A[j, j] = 0
    return np.max(np.abs(Gram_A)) 
開發者ID:spatialaudio,項目名稱:sfa-numpy,代碼行數:24,代碼來源:util.py

示例7: test_size

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def test_size():
    np.random.seed(0)
    N = 50
    L = 12
    n_features = 16
    D = np.random.randn(L, n_features)
    B = np.array(sp.sparse.random(N, L, density=0.5).todense())
    X = np.dot(B, D)
    dico1 = ApproximateKSVD(n_components=L, transform_n_nonzero_coefs=L)
    dico1.fit(X)
    gamma1 = dico1.transform(X)
    e1 = norm(X - gamma1.dot(dico1.components_))

    dico2 = DictionaryLearning(n_components=L, transform_n_nonzero_coefs=L)
    dico2.fit(X)
    gamma2 = dico2.transform(X)
    e2 = norm(X - gamma2.dot(dico2.components_))

    assert dico1.components_.shape == dico2.components_.shape
    assert gamma1.shape == gamma2.shape
    assert e1 < e2 
開發者ID:nel215,項目名稱:ksvd,代碼行數:23,代碼來源:test_ksvd.py

示例8: test_amplitude_damping

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def test_amplitude_damping(self):
        """Test amplitude damping on a simple qubit state"""

        # With probability 0
        test_density_matrix = (
            amplitude_damping_channel(self.density_matrix, 0, 1))
        self.assertAlmostEquals(norm(self.density_matrix -
                                     test_density_matrix), 0.0)

        test_density_matrix = (
            amplitude_damping_channel(self.density_matrix, 0, 1,
                                      transpose=True))
        self.assertAlmostEquals(norm(self.density_matrix -
                                     test_density_matrix), 0.0)

        # With probability 1
        correct_density_matrix = zeros((4, 4), dtype=complex)
        correct_density_matrix[2, 2] = 1

        test_density_matrix = (
            amplitude_damping_channel(self.density_matrix, 1, 1))

        self.assertAlmostEquals(norm(correct_density_matrix -
                                     test_density_matrix), 0.0) 
開發者ID:quantumlib,項目名稱:OpenFermion,代碼行數:26,代碼來源:_channel_state_test.py

示例9: test_jw_restrict_operator

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def test_jw_restrict_operator(self):
        """Test the scheme for restricting JW encoded operators to number"""
        # Make a Hamiltonian that cares mostly about number of electrons
        n_qubits = 6
        target_electrons = 3
        penalty_const = 100.
        number_sparse = jordan_wigner_sparse(number_operator(n_qubits))
        bias_sparse = jordan_wigner_sparse(
            sum([FermionOperator(((i, 1), (i, 0)), 1.0) for i
                 in range(n_qubits)], FermionOperator()))
        hamiltonian_sparse = penalty_const * (
            number_sparse - target_electrons *
            scipy.sparse.identity(2**n_qubits)).dot(
            number_sparse - target_electrons *
            scipy.sparse.identity(2**n_qubits)) + bias_sparse

        restricted_hamiltonian = jw_number_restrict_operator(
            hamiltonian_sparse, target_electrons, n_qubits)
        true_eigvals, _ = eigh(hamiltonian_sparse.A)
        test_eigvals, _ = eigh(restricted_hamiltonian.A)

        self.assertAlmostEqual(norm(true_eigvals[:20] - test_eigvals[:20]),
                               0.0) 
開發者ID:quantumlib,項目名稱:OpenFermion,代碼行數:25,代碼來源:_sparse_tools_test.py

示例10: test_jw_number_restrict_state

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def test_jw_number_restrict_state(self):
        n_qubits = numpy.random.randint(1, 12)
        n_particles = numpy.random.randint(0, n_qubits)

        number_indices = jw_number_indices(n_particles, n_qubits)
        subspace_dimension = len(number_indices)

        # Create a vector that has entry 1 for every coordinate with
        # the specified particle number, and 0 everywhere else
        vector = numpy.zeros(2**n_qubits, dtype=float)
        vector[number_indices] = 1

        # Restrict the vector
        restricted_vector = jw_number_restrict_state(vector, n_particles)

        # Check that it has the correct shape
        self.assertEqual(restricted_vector.shape[0], subspace_dimension)

        # Check that it has the same norm as the original vector
        self.assertAlmostEqual(inner_product(vector, vector),
                               inner_product(restricted_vector,
                                             restricted_vector)) 
開發者ID:quantumlib,項目名稱:OpenFermion,代碼行數:24,代碼來源:_sparse_tools_test.py

示例11: test_twodiags

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def test_twodiags(self):
        A = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
        b = array([1, 2, 3, 4, 5])

        # condition number of A
        cond_A = norm(A.todense(),2) * norm(inv(A.todense()),2)

        for t in ['f','d','F','D']:
            eps = finfo(t).eps  # floating point epsilon
            b = b.astype(t)

            for format in ['csc','csr']:
                Asp = A.astype(t).asformat(format)

                x = spsolve(Asp,b)

                assert_(norm(b - Asp*x) < 10 * cond_A * eps) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_linsolve.py

示例12: check_maxiter

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def check_maxiter(solver, case):
    A = case.A
    tol = 1e-12

    b = arange(A.shape[0], dtype=float)
    x0 = 0*b

    residuals = []

    def callback(x):
        residuals.append(norm(b - case.A*x))

    x, info = solver(A, b, x0=x0, tol=tol, maxiter=3, callback=callback)

    assert_equal(len(residuals), 3)
    assert_equal(info, 3) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:test_iterative.py

示例13: __init__

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def __init__(self, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None,
                 iter=None, norm=maxnorm):

        if f_tol is None:
            f_tol = np.finfo(np.float_).eps ** (1./3)
        if f_rtol is None:
            f_rtol = np.inf
        if x_tol is None:
            x_tol = np.inf
        if x_rtol is None:
            x_rtol = np.inf

        self.x_tol = x_tol
        self.x_rtol = x_rtol
        self.f_tol = f_tol
        self.f_rtol = f_rtol

        self.norm = maxnorm
        self.iter = iter

        self.f0_norm = None
        self.iteration = 0 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:24,代碼來源:nonlin.py

示例14: test_barycenter_kneighbors_graph

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def test_barycenter_kneighbors_graph():
    X = np.array([[0, 1], [1.01, 1.], [2, 0]])

    A = barycenter_kneighbors_graph(X, 1)
    assert_array_almost_equal(
        A.toarray(),
        [[0.,  1.,  0.],
         [1.,  0.,  0.],
         [0.,  1.,  0.]])

    A = barycenter_kneighbors_graph(X, 2)
    # check that columns sum to one
    assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3))
    pred = np.dot(A.toarray(), X)
    assert_less(linalg.norm(pred - X) / X.shape[0], 1)


# ----------------------------------------------------------------------
# Test LLE by computing the reconstruction error on some manifolds. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_locally_linear.py

示例15: test_rank_deficient_design

# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import norm [as 別名]
def test_rank_deficient_design():
    # consistency test that checks that LARS Lasso is handling rank
    # deficient input data (with n_features < rank) in the same way
    # as coordinate descent Lasso
    y = [5, 0, 5]
    for X in (
              [[5, 0],
               [0, 5],
               [10, 10]],
              [[10, 10, 0],
               [1e-32, 0, 0],
               [0, 0, 1]]
             ):
        # To be able to use the coefs to compute the objective function,
        # we need to turn off normalization
        lars = linear_model.LassoLars(.1, normalize=False)
        coef_lars_ = lars.fit(X, y).coef_
        obj_lars = (1. / (2. * 3.)
                    * linalg.norm(y - np.dot(X, coef_lars_)) ** 2
                    + .1 * linalg.norm(coef_lars_, 1))
        coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False)
        coef_cd_ = coord_descent.fit(X, y).coef_
        obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2
                  + .1 * linalg.norm(coef_cd_, 1))
        assert_less(obj_lars, obj_cd * (1. + 1e-8)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_least_angle.py


注:本文中的scipy.linalg.norm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。