本文整理匯總了Python中scipy.linalg.lu_solve方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.lu_solve方法的具體用法?Python linalg.lu_solve怎麽用?Python linalg.lu_solve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.linalg
的用法示例。
在下文中一共展示了linalg.lu_solve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: solve
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def solve(self, vec):
"""Solve the impedance matrix for a source vector. Caches the
factorised matrix for efficiently solving multiple vectors"""
if self.part_o != self.part_s:
raise ValueError("Can only invert a self-impedance matrix")
Z_lu = self.factored()
if isinstance(vec, LookupArray):
vec = vec.simple_view()
lookup = (self.unknowns, (self.part_s, self.basis_container))
if len(vec.shape) > 1:
lookup = lookup+(vec.shape[1],)
I = LookupArray(lookup, dtype=np.complex128)
I_simp = I.simple_view()
I_simp[:] = la.lu_solve(Z_lu, vec)
return I
示例2: lu_compute_mtx_obj
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def lu_compute_mtx_obj(Tbeta_lst, num_bands, K, lu_R_GtGinv_Rt_lst):
"""
compute the matrix (M) in the objective function:
min c^H M c
s.t. c0^H c = 1
Parameters
----------
GtG_lst:
list of G^H * G
Tbeta_lst:
list of Teoplitz matrices for beta-s
Rc0:
right dual matrix for the annihilating filter (same of each block -> not a list)
"""
mtx = np.zeros((K + 1, K + 1), dtype=float) # <= assume G, Tbeta and Rc0 are real-valued
for loop in range(num_bands):
Tbeta_loop = Tbeta_lst[loop]
mtx += np.dot(Tbeta_loop.T,
linalg.lu_solve(lu_R_GtGinv_Rt_lst[loop],
Tbeta_loop, check_finite=False)
)
return mtx
示例3: compute_obj_val
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def compute_obj_val(GtG_inv_lst, Tbeta_lst, Rc0, c_ri_half, num_bands, K):
"""
compute the fitting error.
CAUTION: Here we assume use_lu = True
"""
mtx = np.zeros((K + 1, K + 1), dtype=float) # <= assume G, Tbeta and Rc0 are real-valued
fitting_error = 0
for band_count in range(num_bands):
#GtG_loop = GtG_lst[band_count]
Tbeta_loop = Tbeta_lst[band_count]
mtx += np.dot(Tbeta_loop.T,
linalg.solve(
np.dot(Rc0,
#linalg.lu_solve(GtG_loop, Rc0.T, check_finite=False)
np.dot(GtG_inv_lst[band_count], Rc0.T)
),
Tbeta_loop, check_finite=False
)
)
fitting_error += np.sqrt(np.dot(c_ri_half.T, np.dot(mtx, c_ri_half)).real)
return fitting_error, mtx
示例4: __init__
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def __init__(self, inv_array, inv_lu_and_piv, inv_lu_transposed):
"""
Args:
inv_array (array): 2D array specifying inverse matrix entries.
inv_lu_and_piv (Tuple[array, array]): Pivoted LU factorisation
represented as a tuple with first element a 2D array containing
the lower and upper triangular factors (with the unit diagonal
of the lower triangular factor not stored) and the second
element a 1D array containing the pivot indices. Corresponds
to the output of `scipy.linalg.lu_factor` and input to
`scipy.linalg.lu_solve`.
inv_lu_transposed (bool): Whether LU factorisation is of inverse of
array or transpose of inverse of array.
"""
super().__init__(inv_array.shape)
self._inv_array = inv_array
self._inv_lu_and_piv = inv_lu_and_piv
self._inv_lu_transposed = inv_lu_transposed
示例5: _matvec
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def _matvec(self, x):
return lu_solve(self.M_lu, x)
示例6: solve_nonlinear
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def solve_nonlinear(self, inputs, outputs):
self.lu = lu_factor(inputs['mtx'])
outputs['circulations'] = lu_solve(self.lu, inputs['rhs'])
示例7: solve_linear
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def solve_linear(self, d_outputs, d_residuals, mode):
if mode == 'fwd':
d_outputs['circulations'] = lu_solve(self.lu, d_residuals['circulations'], trans=0)
else:
d_residuals['circulations'] = lu_solve(self.lu, d_outputs['circulations'], trans=1)
示例8: solve_system
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def solve_system(self, rhs):
# To do preconditioning below, we will need to scale each column of A elementwise by the entries of some vector
col_scale = lambda A, scale: (A.T * scale).T # Uses the trick that A*x scales the 0th column of A by x[0], etc.
if self.factorisation_current:
# A(preconditioned) = diag(left_scaling) * A(original) * diag(right_scaling)
# Solve A(original)\rhs
return col_scale(LA.lu_solve((self.lu, self.piv), col_scale(rhs, self.left_scaling)), self.right_scaling)
else:
if self.do_logging:
logging.warning("model.solve_system not using factorisation")
A, left_scaling, right_scaling = self.interpolation_matrix()
return col_scale(LA.solve(A, col_scale(rhs, left_scaling)), right_scaling)
示例9: _left_matrix_multiply
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def _left_matrix_multiply(self, other):
return sla.lu_solve(
self._inv_lu_and_piv, other, self._inv_lu_transposed,
check_finite=False)
示例10: _right_matrix_multiply
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def _right_matrix_multiply(self, other):
return sla.lu_solve(
self._inv_lu_and_piv, other.T, not self._inv_lu_transposed,
check_finite=False).T
示例11: lu_solve_ATAI
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def lu_solve_ATAI(A, rho, b, lu, piv):
r"""
Solve the linear system :math:`(A^T A + \rho I)\mathbf{x} = \mathbf{b}`
or :math:`(A^T A + \rho I)X = B` using :func:`scipy.linalg.lu_solve`.
Parameters
----------
A : array_like
Matrix :math:`A`
rho : float
Scalar :math:`\rho`
b : array_like
Vector :math:`\mathbf{b}` or matrix :math:`B`
lu : array_like
Matrix containing U in its upper triangle, and L in its lower triangle,
as returned by :func:`scipy.linalg.lu_factor`
piv : array_like
Pivot indices representing the permutation matrix P, as returned by
:func:`scipy.linalg.lu_factor`
Returns
-------
x : ndarray
Solution to the linear system.
"""
N, M = A.shape
if N >= M:
x = linalg.lu_solve((lu, piv), b)
else:
x = (b - A.T.dot(linalg.lu_solve((lu, piv), A.dot(b), 1))) / rho
return x
示例12: lu_solve_AATI
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def lu_solve_AATI(A, rho, b, lu, piv):
r"""
Solve the linear system :math:`(A A^T + \rho I)\mathbf{x} = \mathbf{b}`
or :math:`(A A^T + \rho I)X = B` using :func:`scipy.linalg.lu_solve`.
Parameters
----------
A : array_like
Matrix :math:`A`
rho : float
Scalar :math:`\rho`
b : array_like
Vector :math:`\mathbf{b}` or matrix :math:`B`
lu : array_like
Matrix containing U in its upper triangle, and L in its lower triangle,
as returned by :func:`scipy.linalg.lu_factor`
piv : array_like
Pivot indices representing the permutation matrix P, as returned by
:func:`scipy.linalg.lu_factor`
Returns
-------
x : ndarray
Solution to the linear system.
"""
N, M = A.shape
if N >= M:
x = (b - linalg.lu_solve((lu, piv), b.dot(A).T).T.dot(A.T)) / rho
else:
x = linalg.lu_solve((lu, piv), b.T).T
return x
示例13: lu_solve_ATAI
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def lu_solve_ATAI(A, rho, b, lu, piv, check_finite=True):
r"""Solve the linear system :math:`(A^T A + \rho I)\mathbf{x} = \mathbf{b}`
or :math:`(A^T A + \rho I)X = B` using :func:`scipy.linalg.lu_solve`.
Parameters
----------
A : array_like
Matrix :math:`A`
rho : float
Scalar :math:`\rho`
b : array_like
Vector :math:`\mathbf{b}` or matrix :math:`B`
lu : array_like
Matrix containing U in its upper triangle, and L in its lower triangle,
as returned by :func:`scipy.linalg.lu_factor`
piv : array_like
Pivot indices representing the permutation matrix P, as returned by
:func:`scipy.linalg.lu_factor`
check_finite : bool, optional (default False)
Flag indicating whether the input array should be checked for Inf
and NaN values
Returns
-------
x : ndarray
Solution to the linear system
"""
N, M = A.shape
if N >= M:
x = linalg.lu_solve((lu, piv), b, check_finite=check_finite)
else:
x = (b - A.T.dot(linalg.lu_solve((lu, piv), A.dot(b), 1,
check_finite=check_finite))) / rho
return x
示例14: lu_solve_AATI
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def lu_solve_AATI(A, rho, b, lu, piv, check_finite=True):
r"""Solve the linear system :math:`(A A^T + \rho I)\mathbf{x} = \mathbf{b}`
or :math:`(A A^T + \rho I)X = B` using :func:`scipy.linalg.lu_solve`.
Parameters
----------
A : array_like
Matrix :math:`A`
rho : float
Scalar :math:`\rho`
b : array_like
Vector :math:`\mathbf{b}` or matrix :math:`B`
lu : array_like
Matrix containing U in its upper triangle, and L in its lower triangle,
as returned by :func:`scipy.linalg.lu_factor`
piv : array_like
Pivot indices representing the permutation matrix P, as returned by
:func:`scipy.linalg.lu_factor`
check_finite : bool, optional (default False)
Flag indicating whether the input array should be checked for Inf
and NaN values
Returns
-------
x : ndarray
Solution to the linear system
"""
N, M = A.shape
if N >= M:
x = (b - linalg.lu_solve((lu, piv), b.dot(A).T,
check_finite=check_finite).T.dot(A.T)) / rho
else:
x = linalg.lu_solve((lu, piv), b.T, check_finite=check_finite).T
return x
示例15: mimo_block_arnoldi
# 需要導入模塊: from scipy import linalg [as 別名]
# 或者: from scipy.linalg import lu_solve [as 別名]
def mimo_block_arnoldi(self, frequency, r):
n = self.ss.states
A = self.ss.A
B = self.ss.B
C = self.ss.C
for i in range(self.nfreq):
if self.frequency[i] == np.inf:
F = A
G = B
else:
lu_a = krylovutils.lu_factor(frequency[i], A)
F = krylovutils.lu_solve(lu_a, np.eye(n))
G = krylovutils.lu_solve(lu_a, B)
if i == 0:
V = krylovutils.block_arnoldi_krylov(r, F, G)
else:
Vi = krylovutils.block_arnoldi_krylov(r, F, G)
V = np.block([V, Vi])
self.V = V
Ar = V.T.dot(A.dot(V))
Br = V.T.dot(B)
Cr = C.dot(V)
return Ar, Br, Cr